Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552514

RESUMEN

Although aerobic composting is usually utilized in livestock manure disposal, the emission of odorous gases from compost not only induces harm to the human body and the environment, but also causes loss of nitrogen, sulfur, and other essential elements, resulting in a decline in product quality. The impact of biotrickling filter (BTF) and insertion of carbon-based microbial agent (CBMA) on compost maturation, odor emissions, and microbial population during the chicken manure composting were assessed in the current experiment. Compared with the CK group, CBMA addition accelerated the increase in pile temperature (EG group reached maximum temperature 10 days earlier than CK group), increased compost maturation (GI showed the highest increase of 41.3% on day 14 in EG group), resulted in 36.59% and 14.60% increase in NO3--N content and the total nitrogen retention preservation rate after composting. The deodorization effect of biotrickling filter was stable, and the removal rates of NH3, H2S, and TVOCs reached more than 90%, 96%, and 56%, respectively. Furthermore, microbial sequencing showed that CBMA effectively changed the microbial community in compost, protected the ammonia-oxidizing microorganisms, and strengthened the nitrification of the compost. In addition, the nitrifying and denitrifying bacteria were more active in the cooling period than they were in the thermophilic period. Moreover, the abundance of denitrification genes containing nirS, nirK, and nosZ in EG group was lower than that in CK group. Thus, a large amount of nitrogen was retained under the combined drive of BTF and CBMA during composting. This study made significant contributions to our understanding of how to compost livestock manure while reducing releases of odors and raising compost quality.


Asunto(s)
Inoculantes Agrícolas , Compostaje , Animales , Humanos , Estiércol/microbiología , Pollos , Odorantes , Nitrógeno/análisis , Carbono , Suelo
2.
Appl Microbiol Biotechnol ; 107(21): 6703-6716, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676290

RESUMEN

The continuous obstacles of cropping cause severe economic loss, which seriously threaten agricultural sustainable development. In addition, managing excess waste, such as potato peel and mineral waste residues, is a vital burden for industry and agriculture. Therefore, we explored the feasibility of reductive soil disinfestation (RSD) with potato peel and amendment with iron mineral waste residues for the production of Fritillaria thunbergii, which is vulnerable to continuous obstacles. In this study, the influences of iron mineral, RSD with different organic maters, as well as the combined effects of iron mineral and RSD on Fritillaria rhizosphere soil physicochemical properties, microbial communities, and Fritillaria production were investigated. The results revealed that the RSD treatments with potato peel significantly reduced the soil salinity and increased the soil pH, microbial activity, organic matter, and the contents of K and Ca. RSD with potato peel also significantly thrived of the beneficial microbes (Bacillus, Azotobacter, Microvirga, and Chaetomium), and down-regulated potential plant pathogens. RSD with potato peel significantly promoted F. thunbergii yield and quality. Moreover, the combined effects of RSD and iron mineral amendment further enhanced soil health, improved microbial community composition, and increased the yield and peimisine content of F. thunbergii by 24.2% and 49.3%, respectively. Overall, our results demonstrated that RSD with potato peel and amendment with iron mineral waste residues can efficiently improve soil fertility, modify the microbial community, and benefit for both the sustainable production of F. thunbergii and the management of waste. KEY POINTS: • RSD increases soil pH, organic matter, microbial activity, and mineral content • RSD with potato peel enriches beneficial microbes and decreases plant pathogens • PP + Fe treatment increases Fritillaria yield by 24.2% and peimisine content by 49.3.

3.
Microb Cell Fact ; 20(1): 120, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174898

RESUMEN

The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.


Asunto(s)
Productos Biológicos/metabolismo , Microbiología Industrial , Tensoactivos/metabolismo , Administración de Residuos/métodos , Biodegradación Ambiental , Productos Biológicos/química , Tecnología Química Verde , Tensoactivos/química
4.
J Environ Manage ; 290: 112457, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33895449

RESUMEN

This work investigated the impact of the addition of different biochar types on mitigation of volatile fatty acid (VFA) accumulation, methane recovery and digestate quality in mesophilic food waste-sludge co-digestion. Four biochars derived from agricultural and sludge residues under different pyrolysis temperatures were compared. Specific biochar properties such as pH, surface area, chemical properties and presence of surface functional groups likely influenced biochar reactions during digestion, thereby resulting in a varying performance of different biochars. Miscanthus straw biochar addition led to the highest specific methane yield of 307 ± 0.3 mL CH4/g VSadded versus 241.87 ± 5.9 mL CH4/g VSadded from control with no biochar addition over 30 days of the co-digestion period. Biochar supplementation led to enhanced process stability which likely resulted from improved syntrophic VFA oxidation facilitated by specific biochar properties. Overall, a 21.4% increase in the overall methane production was obtained with biochar addition as compared to control. The resulting digestate quality was also investigated. Biochar-amended digester generated a digestate rich in macro- and micro-nutrients including K, Mg, Ca, Fe making biochar-amended digestate a potential replacement of agricultural lime fertilizer. This work demonstrated that the addition of specific biochars with desirable properties alleviated VFA accumulation and facilitated enhanced methane recovery, thereby providing a means to achieve process stability even under high organic loading conditions in co-digestions. Moreover, the availability of biochar-enriched digestate with superior characteristics than biochar-free digestate adds further merit to this process.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Carbón Orgánico , Digestión , Ácidos Grasos Volátiles , Alimentos , Cinética , Metano
5.
Waste Manag Res ; 37(4): 333-346, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30696377

RESUMEN

Food waste (FW) disposal has become a global social, environmental, and economic problem. The current practice of landfilling is undesirable due to its potential emission of greenhouse gas, nutrient recycling, and pollution of water resources. Anaerobic digestion (AD), particularly two-phase AD is a promising option to manage FW and recover energy in the form of methane and obtain value-added by-products. However, most current review literature focuses on operating conditions while often placing little emphasis on improving conversion efficiency through regulating intermediate products. The AD process involves complex metabolic reactions carried out by several microbial groups. Therefore, understanding of these metabolic pathways existing in AD is the key to design effective strategies for enrichment of specific microbial groups which can produce desired intermediates for methane production, which can possibly be achieved by an understanding of the influence of critical process parameters on these metabolic pathways. Thus, it is the aim of this review to describe the effect of process conditions on underlying metabolic pathways in order to allow an efficient manipulation of these pathways for enhancing methane production.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Redes y Vías Metabólicas , Metano
6.
Water Sci Technol ; 73(4): 843-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26901727

RESUMEN

Bioleaching using an iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, and its biogenic flocculants was evaluated to improve the dewaterability of chemically enhanced primary treatment (CEPT) sewage sludge. CEPT sludge in flasks was inoculated with A. ferrooxidans culture, medium-free cells and the cell-free culture filtrate with and without the energy substance Fe(2+), and periodically the sludge samples were analysed for the dewaterability. This investigation proves that bioleaching effectively improved the sludge dewaterability as evidenced from drastic reduction in capillary suction time (≤20 seconds) and specific resistance to filtration (≥90%); however, it requires an adaptability period of 1-2 days. On the other hand, the biogenic flocculant produced by A. ferrooxidans greatly decreased the time-to-filtration and facilitated the dewaterability within 4 h. Results indicate that rapid dewatering of CEPT sludge by biogenic flocculants provides an opportunity to replace the synthetic organic polymer for dewatering.


Asunto(s)
Acidithiobacillus/metabolismo , Restauración y Remediación Ambiental/métodos , Aguas del Alcantarillado/microbiología , Acidithiobacillus/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/instrumentación , Filtración , Floculación , Concentración de Iones de Hidrógeno , Polímeros/química , Aguas del Alcantarillado/química
7.
Sci Total Environ ; 947: 174433, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960153

RESUMEN

A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.

8.
Environ Sci Pollut Res Int ; 31(5): 7712-7727, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170352

RESUMEN

The multi-source hazardous waste co-disposal system, a recent innovation in the industry, offers an efficient approach for hazardous waste disposal. The incineration fly ash (HFA) produced by this system exhibits characteristics distinct from those of typical incineration fly ash, necessitating the use of adjusted disposal methods. This study examined the physicochemical properties, heavy metal content, heavy metal leaching concentration, and dioxin content of HFA generated by the new co-disposal system and compared them with those of conventional municipal waste incineration fly ash. This study investigated the solidification and stabilization of HFA disposal using the organic agent sodium diethyl dithiocarbamate combined with cement on a field scale. The findings revealed significant differences in the structure, composition, and dioxin content of HFA and FA; HFA contained substantially lower levels of dioxins than FA did. Concerning the heavy metal content and leaching; HFA exhibited an unusually high concentration of zinc, surpassing the permitted emission limits, making zinc content a critical consideration in HFA disposal. After stabilization and disposal, the heavy metal leaching and dioxin content of HFA can meet landfill disposal emission standards when a 1% concentration of 10% sodium diethyldithiocarbamate (DDTC) and 150% silicate cement were employed. These results offer valuable insights into the disposal of fly ash resulting from incineration of mixed hazardous waste.


Asunto(s)
Dioxinas , Metales Pesados , Eliminación de Residuos , Ceniza del Carbón/química , Eliminación de Residuos/métodos , Material Particulado , Residuos Sólidos/análisis , Residuos Peligrosos , Carbono , Incineración , Metales Pesados/análisis , Zinc , Ditiocarba
9.
J Hazard Mater ; 463: 132944, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37951173

RESUMEN

Herein, a facile combination approach of chalcopyrite and sodium percarbonate (CuFeS2+ SPC) was established to augment both TCC removal efficiency and sludge dewatering. Results showed that utilizing the CuFeS2 dosage of 600 mg/g total solids (TS) under the optimal condition, along with the SPC dosage of 12.5 mg/g TS, an initial pH of 4.0, and a reaction duration of 40 min, led to a substantial reduction of 53.9% in the TCC content within the sludge, accompanied by a notable decrease of 36.9% in the water content. Compared to well-studied iron-based advanced oxidation processes, CuFeS2 + SPC treatment proved to be more cost-effective and environmentally friendly. Mechanistic findings demonstrated that •OH oxidation played a significant role in TCC removal, with O2•- and 1O2 acting as secondary factors. During the CuFeS2 + SPC process, the received •OH, O2•-, and 1O2 destroyed the main binding sites of extracellular polymeric substances to TCC, including tryptophan-like protein, amide, CO stretch, and -COO- functional groups. As a result, approximately 50% of TCC was partially degraded within the solid sludge phase after the attack of radicals. Meanwhile, the decreased macromolecular organic compounds in solid sludge attenuated the binding efficacy of TCC, giving rise to the transfer of partial TCC to the liquid phase. Ultimately, the TCC in sludge was successfully removed, and five transformation products were identified. This study significantly contributes to our understanding regarding TCC transformation and removal in the sludge conditioning process.


Asunto(s)
Carbonatos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Oxidación-Reducción , Agua , Eliminación de Residuos Líquidos
10.
Environ Pollut ; 354: 124134, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734050

RESUMEN

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 µg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.


Asunto(s)
Aprendizaje Automático , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos/métodos , Biodegradación Ambiental , Residuos Sólidos , Metales Pesados/análisis , Inteligencia Artificial
11.
Environ Technol ; 34(13-16): 2433-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350500

RESUMEN

During composting, the thermophilic phase resulted in high degradation of antibiotics in the composting mass; thus temperature is considered as the major factor for degradation of antibiotics. Therefore, to achieve complete removal of antibiotics, the effect of continuous thermophilic composting on the degradation of antibiotics and their effect on antibiotic resistant bacteria in the pig manure were evaluated. Pig manure was mixed with sawdust, spiked with tetracycline (10 and 100 mg/kg) and sulfadiazine (2 and 20mg/kg) on dry weight (DW) basis and composted at 55 degrees C for six weeks. Based on the organic decomposition, the antibiotics did not affect the composting process significantly, but negatively influenced the bacterial population. Tetracycline clearly exhibited a negative but marginal influence on carbon decomposition at 100 mg/kg level. The bacterial population initially decreased steeply approximately 2 logs and slowly increased thereafter. Sulfadiazine and tetracycline resistant bacterial populations were stable/marginally increased after an initial decrease of about 2 or 3-5 logs, respectively. Sulfadiazine was not detectable after three days; whereas, approximately 8% of tetracycline was detected after 42 days of composting with a t(1/2) of approximately 11 days, irrespective of the initial concentration. The presence of tetracycline in the compost after 42 days of thermophilic composting indicates the involvement of a mesophilic microbial-mediated degradation; however, further studies are required to confirm the direct microbial involvement in the degradation of antibiotics.


Asunto(s)
Estiércol , Suelo/química , Sulfadiazina/metabolismo , Tetraciclina/metabolismo , Madera/química , Animales , Biodegradación Ambiental , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Farmacorresistencia Bacteriana , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Sulfadiazina/análisis , Sulfadiazina/química , Porcinos , Tetraciclina/análisis , Tetraciclina/química
12.
Environ Technol ; 34(13-16): 2221-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350476

RESUMEN

Land application of sewage sludge usually leads to increased levels of heavy metals in soil, plants and groundwater. Pre-treatment using plants has been proposed to reduce the contents of heavy metals and water in sludge prior to land application. This study quantified the transfer of Zn, Cd, Pb and major nutrients in a sludge-soil-plant-leachate system during the treatment of sewage sludge. To accomplish this, a two year pot experiment was carried out to collect leachate, mono- and co-cropping of Sedum alfredii and feed crops was conducted in sludge with an under-layer soil support. Sludge phyto-treatment increased Zn and Cd concentrations in the under-layer soil, but not Pb. Specifically, 70%, 70% and 80% of the original Zn, Cd and Pb, respectively, remained in the sludge, while about 40%, 70% and 60% of the original N, P and K remained. Only 3% to 5% of Cd and Zn and < 1% of Pb were transferred into the under-layer soils or leachates, while more than 12% of the N and P were transferred. Co-planting S. alfredii and feed crops led to a significant reduction of heavy metals in leachates when compared with sludge without planting. Overall, sludge leachate is more appropriate than whole sludge for recycling in agriculture since it reduces the chance of heavy metal contamination in the agro-ecosystem; therefore, co-cropping phytotreatment of sludge can be coupled with sludge leachate recycling for crop production and re-collection of the sludge residue for landfilling.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/análisis , Plantas/química , Plantas/metabolismo , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Alocasia/química , Alocasia/metabolismo , Biomasa , Metales Pesados/metabolismo , Sedum/química , Sedum/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Zea mays/química , Zea mays/metabolismo
13.
Environ Technol ; : 1-16, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36872877

RESUMEN

The present work focused on extracting lactic and acetic acids from the leachate collected from leached bed reactor (LBR) during acidogenesis of food waste using the reactive extraction (RE) process. A wide range of diluents was screened either alone by physical extraction (PE) or in combination with extractants using RE to extract acids from the VFA mix. Aliquat 336-Butyl acetate/MIBK extractants in RE demonstrated higher distribution coefficients (k) and extraction yield (E %) than PE. The response surface methodology (RSM) was used to optimize the extraction of lactic and acetic acids from the synthetic acid mix, using three variables (extractant concentrations, solute/acid concentration and time). Consequently, these three variables were optimized for LBR leachate. The RE was promising, and extraction efficiencies of 65% (lactate), 75% (acetate), 86.2% (propionate) and almost 100% for butyrate and medium-chain fatty acids (MCFA) were achieved after 16 h of extraction. The RSM optimization predicted a maximum E % of 59.60% and 34.67% for lactate and acetate in 5.5 and 1.17 min, respectively. In the leachate experiment, an increase in E% and k was observed with increasing extractant concentration and lactate and acetate concentrations over time. Using a 1M reactive extractant mix and 1.25 and 12 g/L of solute concentrations, the maximum E % of acetate and lactate were 38.66% and 61.8% in 10 min. The results could contribute to developing a rapid in-situ product recovery system integrated with food waste acidogenesis for lactate and acetate recovery, contributing to the bio-economy.

14.
Waste Manag ; 156: 44-54, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436407

RESUMEN

Anaerobic digestion is considered an environmentally benign process for the recycling of food waste into biogas. However, unscientific disposal of ammonium-rich food waste digestate (FWD), a by-product of anaerobic digestion induces environmental issues such as odor nuisances, water pollution, phytotoxicity and pathogen transformations in soil, etc. In the present study, FWD produced from anaerobic digestion of source-separated food waste from markets and industries was used for converting FWD into biofertilizer using 20-L bench scale composters. The issues of nitrogen loss, NH3 volatilization, and greenhouse gas N2O emission were addressed using in-situ composting technologies with the aid of tobacco and bamboo biochar produced at pyrolytic temperatures of 450 °C and 600 °C, respectively. The results demonstrated that the phytotoxic nature of FWD could be reduced into a nutrient-rich compost by mitigating nitrogen loss by 29-53% using 10% tobacco and 10% bamboo biochar in comparison with the control treatment. Tobacco biochar mitigates NH3 emission by 63% but enhances the N2O emission by 65%, whereas bamboo biochar mitigates both NH3 and N2O emissions by 48% and 31%, respectively. Overall, 10% tobacco and 10% bamboo biochar amendment could reduce total nitrogen loss by 29% and 53%, respectively. Furthermore, the biochar addition significantly enhanced the biodegradation rate of FWD and the mature compost could be produced within 21 days of FWD composting as seen by an increased seed germination index (>50% on dry weight basis). The results of this study could be beneficial in developing a circular bioeconomy locally with the waste-derived substrates.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Eliminación de Residuos , Sasa , Carbón Orgánico , Gases de Efecto Invernadero/análisis , Nitrógeno/análisis , Nicotiana , Estiércol , Alimentos , Suelo
15.
Sci Total Environ ; 884: 163829, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121315

RESUMEN

Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.


Asunto(s)
Metano , Anaerobiosis , Temperatura
16.
Bioresour Technol ; 369: 128323, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36400275

RESUMEN

Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.


Asunto(s)
Polihidroxialcanoatos , Biopolímeros , Fermentación , Monosacáridos , Hidrólisis
17.
Microbiol Res ; 272: 127386, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094547

RESUMEN

Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.


Asunto(s)
Burkholderia , Burkholderia/metabolismo , Glucolípidos/química , Biotecnología , Tensoactivos/metabolismo , Pseudomonas aeruginosa/metabolismo
18.
Bioresour Technol ; 380: 129080, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094620

RESUMEN

Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.


Asunto(s)
Reactores Biológicos , Metagenómica , Fermentación , Reactores Biológicos/microbiología , Hidrógeno , Glucosa
19.
Heliyon ; 9(12): e23140, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076152

RESUMEN

Developing low-cost and high-activity catalysts is one of the keys to promoting the catalytic pyrolysis of waste plastics to fuels for plastic recycling. This work studied the effect of clay as the catalyst on mixed plastic pyrolysis for fuel and energy recovery. Four kinds of clay, including nanoclay, montmorillonite, kaolin, and hydrotalcite, were used as catalysts for the pyrolysis of mixed plastic consisted of polyethylene terephthalate, polystyrene, polypropylene, low-density polyethylene, and high-density polyethylene. The product yield and distribution varied with different clay in pyrolysis. The highest yield of oil was 71.0 % when using montmorillonite as the catalyst. While the highest contents of gasoline range hydrocarbons and diesel range hydrocarbons in the oil were achieved when using kaolin and nanoclay, respectively as catalysts. For the gas products, the CO, C2H4, C2H6, C3H6, and C4H10 increased with decreased CO2 in the gaseous products when using clay as catalysts. In general, the mild acidity of clay catalyst was essential to improve the oil yields and the proportion of the gasoline or diesel range fuels in the catalytic pyrolysis of mixed plastic waste.

20.
Environ Technol ; : 1-13, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546529

RESUMEN

High accumulation of volatile fatty acids (VFAs) is one of the major concerns during mesophilic anaerobic co-digestion of food waste (FW) and sewage sludge (SS). Therefore, improving the stability of the anaerobic digestion process could surpass quick acidification while accelerating methanogenesis. In this study, the suitability of biochar-assisted co-digestion was evaluated at different inoculum and substrate ratios (I/S ratios: 0.1, 0.3, 0.6, and 0.9). The maximum methane yield of 256.85 mL/gVSadd was observed at an I/S ratio of 0.6. The results indicated fast volatile solid removal (∼ 47.17% to 73%) and a critical role of biochar addition in alleviating the underlying inhibitions. Substantial changes in the microbial community composition including Methanosata, Methanobrevibacter, and Methanosarcina were also observed which predominated and stabilised the methanogenesis process at higher I/S ratios. These results emphasised that the anaerobic co-digestion of FW/sludge is a promising approach, wherein the biochar amendment at different I/S ratios should be well maintained to avoid inhibitions from excess microbial VFA acidification of organic waste feedstocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA