Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 92(6): e0001624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38771050

RESUMEN

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.


Asunto(s)
Antibacterianos , Colistina , Modelos Animales de Enfermedad , Inmunidad Innata , Infecciones por Klebsiella , Klebsiella pneumoniae , Lípido A , Animales , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/efectos de los fármacos , Colistina/farmacología , Lípido A/inmunología , Ratones , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Femenino
2.
Annu Rev Genet ; 50: 493-513, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27893961

RESUMEN

In many parts of the world, enteropathogenic Escherichia coli (EPEC) are a leading cause of death in children with diarrhea. Much of what we know about the pathogenesis of EPEC infections is based on the study of one or two prototypic strains that have provided deep insight into the precise mechanisms by which EPEC colonizes the intestine, evades host immunity, and spreads from person to person. In some cases, defining the biochemical activity of the host-interacting effector proteins from these prototypic strains has led to the discovery of novel post-translational protein modifications and new understandings of biology and host-pathogen interactions. However, genomic analysis of recent EPEC isolates has revealed that the EPEC pathotype is more diverse than previously appreciated. Although by definition all strains carry the locus of enterocyte effacement, the effector repertoires of different clonal groups are quite divergent, suggesting that there is still a great deal to learn about the genetic basis of EPEC virulence.


Asunto(s)
Diarrea/microbiología , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Apoptosis , Escherichia coli Enteropatógena/inmunología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Humanos , Evasión Inmune , Inflamasomas , Fagocitosis , Virulencia/genética
3.
PLoS Pathog ; 17(6): e1009658, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133469

RESUMEN

During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.


Asunto(s)
Arginina/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Glicosiltransferasas/metabolismo , Factores de Virulencia/metabolismo , Línea Celular , Humanos
4.
Mol Cell Proteomics ; 18(6): 1138-1156, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30902834

RESUMEN

Strains of Salmonella utilize two distinct type three secretion systems to deliver effector proteins directly into host cells. The Salmonella effectors SseK1 and SseK3 are arginine glycosyltransferases that modify mammalian death domain containing proteins with N-acetyl glucosamine (GlcNAc) when overexpressed ectopically or as recombinant protein fusions. Here, we combined Arg-GlcNAc glycopeptide immunoprecipitation and mass spectrometry to identify host proteins GlcNAcylated by endogenous levels of SseK1 and SseK3 during Salmonella infection. We observed that SseK1 modified the mammalian signaling protein TRADD, but not FADD as previously reported. Overexpression of SseK1 greatly broadened substrate specificity, whereas ectopic co-expression of SseK1 and TRADD increased the range of modified arginine residues within the death domain of TRADD. In contrast, endogenous levels of SseK3 resulted in modification of the death domains of receptors of the mammalian TNF superfamily, TNFR1 and TRAILR, at residues Arg376 and Arg293 respectively. Structural studies on SseK3 showed that the enzyme displays a classic GT-A glycosyltransferase fold and binds UDP-GlcNAc in a narrow and deep cleft with the GlcNAc facing the surface. Together our data suggest that salmonellae carrying sseK1 and sseK3 employ the glycosyltransferase effectors to antagonise different components of death receptor signaling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acetilglucosamina/metabolismo , Animales , Proteínas Bacterianas/química , Secuencia Conservada , Ácido Glutámico/metabolismo , Glicosilación , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación/genética , Dominios Proteicos , Células RAW 264.7 , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Especificidad por Sustrato , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo
5.
Am J Respir Cell Mol Biol ; 61(2): 185-197, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30742488

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a versatile human pathogen that is associated with diverse types of infections ranging from benign colonization to sepsis. We postulated that MRSA must undergo specific genotypic and phenotypic changes to cause chronic pulmonary disease. We investigated how MRSA adapts to the human airway to establish chronic infection, as occurs during cystic fibrosis (CF). MRSA isolates from patients with CF that were collected over a 4-year period were analyzed by whole-genome sequencing, transcriptional analysis, and metabolic studies. Persistent MRSA infection was associated with staphylococcal metabolic adaptation, but not changes in immunogenicity. Adaptation was characterized by selective use of the tricarboxylic acid cycle cycle and generation of biofilm, a means of limiting oxidant stress. Increased transcription of specific metabolic genes was conserved in all host-adapted strains, most notably a 10,000-fold increase in fumC, which catalyzes the interconversion of fumarate and malate. Elevated fumarate levels promoted in vitro biofilm production in clinical isolates. Host-adapted strains preferred to assimilate glucose polymers and pyruvate, which can be metabolized to generate N-acetylglucosamine polymers that comprise biofilm. MRSA undergoes substantial metabolic adaptation to the human airway to cause chronic pulmonary infection, and selected metabolites may be useful therapeutically to inhibit infection.


Asunto(s)
Fibrosis Quística/microbiología , Enfermedades Pulmonares/microbiología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Neumonía Estafilocócica/microbiología , Infecciones Estafilocócicas/microbiología , Acetilglucosamina/metabolismo , Adulto , Animales , Biopelículas , Bronquios/metabolismo , Líquido del Lavado Bronquioalveolar , Fibrosis Quística/metabolismo , Citocinas/metabolismo , Femenino , Fumaratos/metabolismo , Gentamicinas/farmacología , Glucosa/metabolismo , Humanos , Enfermedades Pulmonares/metabolismo , Malatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Filogenia , Neumonía Estafilocócica/metabolismo , Ácido Pirúvico/metabolismo , Infecciones Estafilocócicas/metabolismo , Transcripción Genética , Ácidos Tricarboxílicos/metabolismo , Secuenciación Completa del Genoma
6.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833333

RESUMEN

Staphylococcus aureus is a major human pathogen of the skin. The global burden of diabetes is high, with S. aureus being a major complication of diabetic wound infections. We investigated how the diabetic environment influences S. aureus skin infection and observed an increased susceptibility to infection in mouse models of both type I and type II diabetes. A dual gene expression approach was taken to investigate transcriptional alterations in both the host and bacterium after infection. While analysis of the host response revealed only minor changes between infected control and diabetic mice, we observed that S. aureus isolated from diabetic mice had significant increases in the levels of genes associated with translation and posttranslational modification and chaperones and reductions in the levels of genes associated with amino acid transport and metabolism. One family of genes upregulated in S. aureus isolated from diabetic lesions encoded the Clp proteases, associated with the misfolded protein response. The Clp proteases were found to be partially glucose regulated as well as influencing the hemolytic activity of S. aureus Strains lacking the Clp proteases ClpX, ClpC, and ClpP were significantly attenuated in our animal model of skin infection, with significant reductions observed in dermonecrosis and bacterial burden. In particular, mutations in clpP and clpX were significantly attenuated and remained attenuated in both normal and diabetic mice. Our data suggest that the diabetic environment also causes changes to occur in invading pathogens, and one of these virulence determinants is the Clp protease system.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Virulencia/genética , Virulencia/inmunología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones
7.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27872241

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that utilizes a type III secretion system (T3SS) to inject an array of virulence effector proteins into host enterocytes to subvert numerous cellular processes for successful colonization and dissemination. The T3SS effector NleD is a 26-kDa zinc metalloprotease that is translocated into host enterocytes, where it directly cleaves and inactivates the mitogen-activated protein kinase signaling proteins JNK and p38. Here a library of 91 random transposon-based, in-frame, linker insertion mutants of NleD were tested for their ability to cleave JNK and p38 during transient transfection of cultured epithelial cells. Immunoblot analysis of p38 and JNK cleavage showed that 7 mutant derivatives of NleD no longer cleaved p38 but maintained the ability to cleave JNK. Site-directed mutation of specific regions surrounding the insertion sites within NleD revealed that a single amino acid, R203, was essential for cleavage of p38 but not JNK in a direct in vitro cleavage assay, in transiently transfected cells, or in EPEC-infected cells. Mass spectrometry analysis narrowed the cleavage region to within residues 187 and 213 of p38. Mutation of residue R203 within NleD to a glutamate residue abolished the cleavage of p38 and impaired the ability of NleD to inhibit AP-1-dependent gene transcription of a luciferase reporter. Furthermore, the R203 mutation abrogated the ability of NleD to dampen interleukin-6 production in EPEC-infected cells. Overall, this work provides greater insight into substrate recognition and specificity by the type III effector NleD.


Asunto(s)
Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Interacciones Huésped-Patógeno , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Arginina/metabolismo , Línea Celular , Citocinas/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Mutagénesis Insercional , Proteolisis , Transducción de Señal
8.
Infect Immun ; 85(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28138023

RESUMEN

During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


Asunto(s)
Apoptosis , Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/metabolismo , Caspasas/metabolismo , Línea Celular , Expresión Génica Ectópica , Proteínas de Escherichia coli/genética , Proteína Ligando Fas/metabolismo , Prueba de Complementación Genética , Células HEK293 , Células HeLa , Humanos , Mutación , Transducción de Señal , Factores de Virulencia/genética , Receptor fas/metabolismo
9.
Infect Immun ; 84(5): 1346-1360, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26883593

RESUMEN

Enteropathogenic Escherichia coli (EPEC) interferes with host cell signaling by injecting virulence effector proteins into enterocytes via a type III secretion system (T3SS). NleB1 is a novel T3SS glycosyltransferase effector from EPEC that transfers a single N-acetylglucosamine (GlcNAc) moiety in an N-glycosidic linkage to Arg(117) of the Fas-associated death domain protein (FADD). GlcNAcylation of FADD prevents the assembly of the canonical death-inducing signaling complex and inhibits Fas ligand (FasL)-induced cell death. Apart from the DXD catalytic motif of NleB1, little is known about other functional sites in the enzyme. In the present study, members of a library of 22 random transposon-based, in-frame, linker insertion mutants of NleB1 were tested for their ability to block caspase-8 activation in response to FasL during EPEC infection. Immunoblot analysis of caspase-8 cleavage showed that 17 mutant derivatives of NleB1, including the catalytic DXD mutant, did not inhibit caspase-8 activation. Regions of interest around the insertion sites with multiple or single amino acid substitutions were examined further. Coimmunoprecipitation studies of 34 site-directed mutants showed that the NleB1 derivatives with the E253A, Y219A, and PILN(63-66)AAAA (in which the PILN motif from residues 63 to 66 was changed to AAAA) mutations bound to but did not GlcNAcylate FADD. A further mutant derivative, the PDG(236-238)AAA mutant, did not bind to or GlcNAcylate FADD. Infection of mice with the EPEC-like mouse pathogen Citrobacter rodentium expressing NleBE253A and NleBY219A showed that these strains were attenuated, indicating the importance of residues E253 and Y219 in NleB1 virulence in vivo In summary, we identified new amino acid residues critical for NleB1 activity and confirmed that these are required for the virulence function of NleB1.


Asunto(s)
Análisis Mutacional de ADN , Escherichia coli Enteropatógena/enzimología , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Apoptosis , Arginina/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidad , Elementos Transponibles de ADN , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Proteína Ligando Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional , Virulencia
10.
Cell Microbiol ; 16(12): 1736-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25266336

RESUMEN

Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor-induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.


Asunto(s)
Apoptosis , Enterocitos/inmunología , Enterocitos/microbiología , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/inmunología , Interacciones Huésped-Patógeno , Animales , Humanos
11.
Immunometabolism (Cobham) ; 5(3): e00028, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37492184

RESUMEN

Klebsiella pneumoniae is a common Gram-negative pathogen associated with community-acquired and healthcare-associated infections. Its ability to acquire genetic elements resulted in its rapid development of resistance to virtually all antimicrobial agents. Once infection is established, K. pneumoniae is able to evade the host immune response and perhaps more importantly, undergo metabolic rewiring to optimize its ability to maintain infection. K. pneumoniae lipopolysaccharide and capsular polysaccharide are central factors in the induction and evasion of immune clearance. Less well understood is the importance of immunometabolism, the intersection between cellular metabolism and immune function, in the host response to K. pneumoniae infection. Bacterial metabolism itself is perceived as a metabolic stress to the host, altering the microenvironment at the site of infection. In this review, we will discuss the metabolic responses induced by K. pneumoniae, particularly in response to stimulation with the metabolically active bacteria versus pathogen-associated molecular patterns alone, and their implications in shaping the nature of the immune response and the infection outcome. A better understanding of the immunometabolic response to K. pneumoniae may help identify new targets for therapeutic intervention in the treatment of multidrug-resistant bacterial infections.

12.
Nat Rev Microbiol ; 21(6): 380-395, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36707725

RESUMEN

Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Staphylococcus aureus/genética , Evasión Inmune , Factores de Virulencia/genética , Adaptación Fisiológica , Interacciones Huésped-Patógeno , Mamíferos
13.
Cell Metab ; 35(10): 1767-1781.e6, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37793346

RESUMEN

Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.


Asunto(s)
Lipopolisacáridos , Pseudomonas aeruginosa , Ratones , Animales , Pulmón , Inflamación , Cuerpos Cetónicos
14.
Front Cell Infect Microbiol ; 12: 1060810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636720

RESUMEN

Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.


Asunto(s)
Infecciones Estafilocócicas , Vacunas , Humanos , Staphylococcus aureus/genética , Evasión Inmune , Estudios Prospectivos , Infecciones Estafilocócicas/microbiología
15.
Cell Metab ; 34(5): 761-774.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35413274

RESUMEN

K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/microbiología , Estrés Fisiológico
16.
Front Immunol ; 12: 790574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899759

RESUMEN

Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.


Asunto(s)
Metabolismo Energético , Pulmón/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Adaptación Fisiológica , Animales , Interacciones Huésped-Patógeno , Humanos , Pulmón/inmunología , Pulmón/microbiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Succinatos/metabolismo
17.
Cell Rep ; 35(9): 109196, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077733

RESUMEN

Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.


Asunto(s)
Aciltransferasas/metabolismo , Infecciones por Klebsiella/enzimología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/fisiología , Infecciones del Sistema Respiratorio/enzimología , Infecciones del Sistema Respiratorio/microbiología , Acetilación , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Ciclo del Ácido Cítrico , Eliminación de Gen , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/aislamiento & purificación , Lípido A/metabolismo , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Lisina/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Ratones Endogámicos C57BL , Filogenia , Procesamiento Proteico-Postraduccional/efectos de los fármacos
18.
Toxins (Basel) ; 12(9)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917040

RESUMEN

Staphylococcus aureus is a metabolically flexible pathogen that causes infection in diverse settings. An array of virulence factors, including the secreted toxins, enables S. aureus to colonize different environmental niches and initiate infections by any of several discrete pathways. During these infections, both S. aureus and host cells compete with each other for nutrients and remodel their metabolism for survival. This metabolic interaction/crosstalk determines the outcome of the infection. The reprogramming of metabolic pathways in host immune cells not only generates adenosine triphosphate (ATP) to meet the cellular energy requirements during the infection process but also activates antimicrobial responses for eventual bacterial clearance, including cell death pathways. The selective pressure exerted by host immune cells leads to the emergence of bacterial mutants adapted for chronicity. These host-adapted mutants are often characterized by substantial changes in the expression of their own metabolic genes, or by mutations in genes involved in metabolism and biofilm formation. Host-adapted S. aureus can rewire or benefit from the metabolic activities of the immune cells via several mechanisms to cause persistent infection. In this review, we discuss how S. aureus activates host innate immune signaling, which results in an immune metabolic pressure that shapes S. aureus metabolic adaptation and determines the outcome of the infection.


Asunto(s)
Metabolismo Energético , Inmunidad Innata , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Transducción de Señal , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Virulencia
19.
Front Immunol ; 11: 385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231665

RESUMEN

A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Pseudomonas aeruginosa/fisiología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Staphylococcus aureus/fisiología , Adaptación Fisiológica/inmunología , Animales , Biopelículas , Enfermedad Crónica , Humanos , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/patogenicidad , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad
20.
Artículo en Inglés | MEDLINE | ID: mdl-32974215

RESUMEN

During infection, Salmonella species inject multiple type III secretion system (T3SS) effector proteins into host cells that mediate invasion and subsequent intracellular replication. At early stages of infection, Salmonella exploits key regulators of host intracellular vesicle transport, including the small GTPases Rab5 and Rab7, to subvert host endocytic vesicle trafficking and establish the Salmonella-containing vacuole (SCV). At later stages of intracellular replication, interactions of the SCV with Rab GTPases are less well defined. Here we report that Rab1, Rab5, and Rab11 are modified at later stages of Salmonella infection by SseK3, an arginine N-acetylglucosamine (GlcNAc) transferase effector translocated via the Salmonella pathogenicity island 2 (SPI-2) type III secretion system. SseK3 modified arginines at positions 74, 82, and 111 within Rab1 and this modification occurred independently of Rab1 nucleotide binding. SseK3 exhibited Golgi localization that was independent of its glycosyltransferase activity but Arg-GlcNAc transferase activity was required for inhibition of alkaline phosphatase secretion in transfected cells. While SseK3 had a modest effect on SEAP secretion during infection of HeLa229 cells, inhibition of IL-1 and GM-CSF cytokine secretion was only observed upon over-expression of SseK3 during infection of RAW264.7 cells. Our results suggest that, in addition to targeting death receptor signaling, SseK3 may contribute to Salmonella infection by interfering with the activity of key Rab GTPases.


Asunto(s)
Infecciones por Salmonella , Proteínas de Unión al GTP rab , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Salmonella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA