RESUMEN
Extrachromosomal circular DNA (eccDNA) is common in somatic tissue, but its existence and effects in the human germline are unexplored. We used microscopy, long-read DNA sequencing, and new analytic methods to document thousands of eccDNAs from human sperm. EccDNAs derived from all genomic regions and mostly contained a single DNA fragment, although some consisted of multiple fragments. The generation of eccDNA inversely correlates with the meiotic recombination rate, and chromosomes with high coding-gene density and Alu element abundance form the least eccDNA. Analysis of insertions in human genomes further indicates that eccDNA can persist in the human germline when the circular molecules reinsert themselves into the chromosomes. Our results suggest that eccDNA has transient and permanent effects on the germline. They explain how differences in the physical and genetic map might arise and offer an explanation of how Alu elements coevolved with genes to protect genome integrity against deleterious mutations producing eccDNA.
Asunto(s)
Cromosomas Humanos , ADN Circular/metabolismo , Meiosis , Recombinación Genética , Espermatozoides/metabolismo , Elementos Alu , ADN Circular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , MutaciónRESUMEN
Accurate taxonomic profiling of microbial taxa in a metagenomic sample is vital to gain insights into microbial ecology. Recent advancements in sequencing technologies have contributed tremendously toward understanding these microbes at species resolution through a whole shotgun metagenomic approach. In this study, we developed a new bioinformatics tool, coverage-based analysis for identification of microbiome (CAIM), for accurate taxonomic classification and quantification within both long- and short-read metagenomic samples using an alignment-based method. CAIM depends on two different containment techniques to identify species in metagenomic samples using their genome coverage information to filter out false positives rather than the traditional approach of relative abundance. In addition, we propose a nucleotide-count-based abundance estimation, which yield lesser root mean square error than the traditional read-count approach. We evaluated the performance of CAIM on 28 metagenomic mock communities and 2 synthetic datasets by comparing it with other top-performing tools. CAIM maintained a consistently good performance across datasets in identifying microbial taxa and in estimating relative abundances than other tools. CAIM was then applied to a real dataset sequenced on both Nanopore (with and without amplification) and Illumina sequencing platforms and found high similarity of taxonomic profiles between the sequencing platforms. Lastly, CAIM was applied to fecal shotgun metagenomic datasets of 232 colorectal cancer patients and 229 controls obtained from 4 different countries and 44 primary liver cancer patients and 76 controls. The predictive performance of models using the genome-coverage cutoff was better than those using the relative-abundance cutoffs in discriminating colorectal cancer and primary liver cancer patients from healthy controls with a highly confident species markers.
Asunto(s)
Metagenómica , Microbiota , Humanos , Microbiota/genética , Metagenómica/métodos , Biología Computacional/métodos , Metagenoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Algoritmos , Análisis de Secuencia de ADN/métodosRESUMEN
BACKGROUND: Methicillin-resistant Staphylococcus haemolyticus (MRSH) is an important pathogenic agent of bovine mastitis. Among the prominent clone lineages in dairy cows are MRSH sequence types ST3 and ST42. Little information is available on the complete characterization of SCCmec elements in MRSH. OBJECTIVE: In this study, two clinical isolates of MRSH ST3 and ST42 from bovine mastitis milk were selected, and their nontypable SCCmec structures were compared. METHODS: Two MRSH strains, MRSH-ST3 strain M62.3 and MRSH-ST42 strain M81.1, were identified from bovine mastitis milk in Thailand in 2022. Minimum inhibitory concentration was used to screen for antimicrobial resistance susceptibility. Oxford Nanopore Technologies and Illumina sequencing were performed in combination to complete the genome. Their gene organization and structure of SCCmec types were analysed and compared with the whole sequences of other strains in the same sequence types. RESULTS: Both MRSH-ST3 strain M62.3 and MRSH-ST42 strain M81.1 possessed the class C1 mec complex but lacked the ccr gene complex. Notably, MRSH-ST42 strain M81.1 contained a novel variant of C1 mec complex, which consisted of IS431-mecA-ISSha1-paaZ-upgQ-IS431, with IS431 organized in the same orientation. Apart from class C1 mec and the heavy metal-resistant cluster, the gene composition and order of the SCCmec element varied. In ST3, variations in the SCCmec type, gene content and organization were observed. CONCLUSIONS: The distinct evolution of the MRSH lineage was indicated by the various SCCmec elements. The insertion of ISSha1 resulted in a unique variant of class C1 mec complex that demonstrated the important role of the insertion sequence in SCCmec diversification.
Asunto(s)
Antibacterianos , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Leche , Infecciones Estafilocócicas , Staphylococcus haemolyticus , Animales , Mastitis Bovina/microbiología , Bovinos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efectos de los fármacos , Staphylococcus haemolyticus/aislamiento & purificación , Femenino , Leche/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Antibacterianos/farmacología , Tailandia , Cromosomas Bacterianos/genética , Resistencia a la Meticilina/genética , Genoma Bacteriano , Secuenciación Completa del GenomaRESUMEN
Schaalia turicensis is facultative anaerobic Gram-positive bacillus that commonly inhabits the oropharynx, gastrointestinal, and genitourinary tract of healthy individuals. This organism has been co-isolated with Neisseria gonorrhoeae from 15-year-old Thai male patient with gonococcal urethritis in Bangkok, Thailand. In this study, we characterized the class 1 integron in S. turicensis isolate using whole-genome sequencing and bioinformatics analysis. Sequencing analysis confirmed the presence of an imperfect class 1 integron located on chromosome and a novel 24.5-kb-long composite transposon, named Tn7083. The transposon Tn7083 carried genes encoding chloramphenicol resistance (cmx), sulfonamide resistance (sul1), and aminoglycoside resistance [aph(6)-Id (strB), aph(3'')-Ib (strA), aph(3')-Ia].
Asunto(s)
Antibacterianos , Genoma Bacteriano , Gonorrea , Uretritis , Humanos , Masculino , Tailandia , Uretritis/microbiología , Gonorrea/microbiología , Antibacterianos/farmacología , Adolescente , Secuenciación Completa del Genoma , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/aislamiento & purificación , Neisseria gonorrhoeae/clasificación , Neisseria gonorrhoeae/efectos de los fármacos , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genéticaRESUMEN
OBJECTIVES: Streptococcus agalactiae, or Group B Streptococcus (GBS), is a leading cause of neonatal sepsis. Materno-fetal transmission of the microorganisms present in the lower genital tract/perineum is considered to be the most frequent mode for acquisition of infection. It has also been proposed that, in a subset of cases, GBS causes acute chorioamnionitis, intraamniotic infection, and fetal/neonatal sepsis. However, the evidence to support this ascending pathway is derived from microbiologic studies that rely on cultivation methods, which do not have the resolution to determine if the microorganisms causing neonatal sepsis are the same as those found in the amniotic fluid and the vaginal ecosystem. METHODS: We used whole genome sequencing of the microorganisms isolated from the vagina, amniotic fluid, chorioamniotic membranes, and neonatal blood (four isolates) in a case of early neonatal sepsis. Using hybrid genome assembly, we characterized the genomic features including virulence factors and antimicrobial resistance in four isolates from the same mother, placenta, and newborn. RESULTS: Whole genome sequencing revealed that the microorganisms in the four clinical isolates corresponded to S. agalactiae sequence type 1, clonal complexes 1, and serotype Ib. Comparative genomic analysis illustrated similar DNA sequences of the four genomes. CONCLUSIONS: This study presents the first evidence of the genomic similarity of microorganisms in the vaginal ecosystem, the space between the chorioamniotic membranes of the placenta, amniotic fluid, and neonatal blood.
RESUMEN
BACKGROUND: Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS: We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION: We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.
Asunto(s)
Corioamnionitis , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Trabajo de Parto Prematuro , Embarazo , Humanos , Femenino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Corioamnionitis/genética , Corioamnionitis/tratamiento farmacológico , Enterococcus faecium/genética , Genómica , Trabajo de Parto Prematuro/tratamiento farmacológico , Farmacorresistencia Microbiana , Infecciones por Bacterias Grampositivas/microbiologíaRESUMEN
BACKGROUND: Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed. RESULTS: The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis. CONCLUSIONS: In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.
Asunto(s)
Genoma del Cloroplasto , Rhamnaceae , Genoma del Cloroplasto/genética , Rhamnaceae/genética , Filogenia , Genómica/métodos , Cloroplastos/genéticaRESUMEN
AIM: Carbapenem resistance among Enterobacteriaceae is a serious threat to humans worldwide. This study aims to evaluate the phenotypic and genotypic characterization of carbapenemase-producing Enterobacter cloacae complex (ECC) retrieved from water sources in the central part of Thailand. METHODS AND RESULTS: Samples were collected from water bodies surrounding farms and communities in central Thailand. The species were identified by using MALDI-TOF MS. The minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined. The carbapenemase-producing genes were detected by PCR and whole genome sequencing (WGS). ECC with chromosome-encoded blaIMI-1 carbapenemase were detected. These isolates were resistant to last-resort antibiotics such as carbapenems and colistin as well as penicillin. In addition, all blaIMI-1 genes isolated from this study were found to be associated with chromosomally integrated Xer-dependent integrative mobile elements (IMEXs). CONCLUSION: These findings highlight the diversity and dissemination of carbapenemases-producing Enterobacterales in environmental sources. With the increasing detection of carbapenemase genes worldwide, we should be aware of the blaIMI-producing E. cloacae complex with a high resistance profile and the ability to mobilize within the environment.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Enterobacter cloacae/genética , Tailandia , Agua , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Genómica , Pruebas de Sensibilidad MicrobianaRESUMEN
Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.
Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Procesamiento Postranscripcional del ARN , RNA-Seq , Error Científico Experimental , Programas Informáticos , Adenina/análogos & derivados , Adenina/análisis , Animales , Línea Celular , Escherichia coli/genética , Humanos , Meiosis , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Motivos de Nucleótidos , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Curva ROC , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Moldes Genéticos , Transcripción GenéticaRESUMEN
OBJECTIVES: Early diagnosis and treatment of intra-amniotic infection is crucial. Rapid pathogen identification allows for a definite diagnosis and enables proper management. We determined whether the 16S amplicon sequencing performed by a nanopore sequencing technique make possible rapid bacterial identification at the species level in intra-amniotic infection. METHODS: Five cases of confirmed intra-amniotic infection, determined by either cultivation or 16S rDNA polymerase chain reaction (PCR) Sanger sequencing, and 10 cases of women who underwent mid-trimester genetic amniocentesis were included. DNA was extracted from amniotic fluid and PCR was performed on the full-length 16S rDNA. Nanopore sequencing was performed. The results derived from nanopore sequencing were compared with those derived from cultivation and Sanger sequencing methods. RESULTS: Bacteria were successfully detected from amniotic fluid using nanopore sequencing in all cases of intra-amniotic infection. Nanopore sequencing identified additional bacterial species and polymicrobial infections. All patients who underwent a mid-trimester amniocentesis had negative cultures, negative 16S PCR Sanger sequencing and nanopore sequencing. Identification of the microorganisms using nanopore sequencing technique at the bacterial species level was achieved within 5-9 h from DNA extraction. CONCLUSIONS: This is the first study demonstrating that the nanopore sequencing technique is capable of rapid diagnosis of intra-amniotic infection using fresh amniotic fluid samples.
Asunto(s)
Corioamnionitis , Secuenciación de Nanoporos , Nanoporos , Embarazo , Humanos , Femenino , Corioamnionitis/diagnóstico , Corioamnionitis/microbiología , Líquido Amniótico/microbiología , Amniocentesis , BacteriasRESUMEN
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.
Asunto(s)
Neoplasias Encefálicas/patología , Isocitrato Deshidrogenasa/genética , Oligodendroglioma/patología , Sarcoma/patología , Adulto , Anciano , Neoplasias Encefálicas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Oligodendroglioma/genética , Sarcoma/genéticaRESUMEN
Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O6- or N2-alkyl-2'-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.
Asunto(s)
Aductos de ADN/análisis , ADN/química , Estructura Molecular , Secuenciación de Nanoporos , Tamaño de la Partícula , Plásmidos , Estereoisomerismo , Propiedades de SuperficieRESUMEN
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted â¼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Asunto(s)
Biología Computacional/métodos , Elementos de Facilitación Genéticos/genética , G-Cuádruplex , Genoma Humano/genética , Regiones Promotoras Genéticas/genética , ADN/química , ADN/genética , ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células K562 , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN/metabolismo , Transcripción GenéticaRESUMEN
Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error correction. Assembly of the reads derived from all three technologies resulted in complete sequences for all 16 yeast chromosomes, as well as the mitochondrial chromosome, in one step. Further, we identified three types of DNA methylation (5mC, 4mC and 6mA). Comparison between the reference strain S288C and strain CEN.PK113-7D identified chromosomal rearrangements against a background of similar gene content between the two strains. We identified full-length transcripts through ONT direct RNA sequencing technology. This allows for the identification of transcriptional landscapes, including untranslated regions (UTRs) (5' UTR and 3' UTR) as well as differential gene expression quantification. About 91% of the predicted transcripts could be consistently detected across biological replicates grown either on glucose or ethanol. Direct RNA sequencing identified many polyadenylated non-coding RNAs, rRNAs, telomere-RNA, long non-coding RNA and antisense RNA. This work demonstrates a strategy to obtain complete genome sequences and transcriptional landscapes that can be applied to other eukaryal organisms.
Asunto(s)
Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Metilación de ADN/genética , Genómica , Nanoporos , ARN Largo no Codificante/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADNRESUMEN
R-loopDB (http://rloop.bii.a-star.edu.sg) was originally constructed as a collection of computationally predicted R-loop forming sequences (RLFSs) in the human genic regions. The renewed R-loopDB provides updates, improvements and new options, including access to recent experimental data. It includes genome-scale prediction of RLFSs for humans, six other animals and yeast. Using the extended quantitative model of RLFSs (QmRLFS), we significantly increased the number of RLFSs predicted in the human genes and identified RLFSs in other organism genomes. R-loopDB allows searching of RLFSs in the genes and in the 2 kb upstream and downstream flanking sequences of any gene. R-loopDB exploits the Ensembl gene annotation system, providing users with chromosome coordinates, sequences, gene and genomic data of the 1 565 795 RLFSs distributed in 121 056 genic or proximal gene regions of the covered organisms. It provides a comprehensive annotation of Ensembl RLFS-positive genes including 93 454 protein coding genes, 12 480 long non-coding RNA and 7 568 small non-coding RNA genes and 7 554 pseudogenes. Using new interface and genome viewers of R-loopDB, users can search the gene(s) in multiple species with keywords in a single query. R-loopDB provides tools to carry out comparative evolution and genome-scale analyses in R-loop biology.
Asunto(s)
ADN/química , Bases de Datos de Ácidos Nucleicos , Genes , ARN/química , Animales , Genómica , Humanos , Ratones , Conformación de Ácido NucleicoRESUMEN
Vascular smooth muscle cells (VSMCs) in the arterial wall have diverse functions. In pathological states, the interplay between transcripts and microRNAs (miRNAs) leads to phenotypic changes. Understanding the regulatory role of miRNAs and their target genes may reveal how VSMCs modulate the pathogenesis of coronary artery disease. Laser capture microdissection was performed on aortic wall tissues obtained from coronary artery bypass graft patients with and without recent acute myocardial infarction (MI). The mSMRT-qPCR miRNA assay platform (MiRXES, Singapore) was used to profile miRNA. The miRNA data were co-analyzed with significant mRNA transcripts. TargetScan 7.1 was applied to evaluate miRNA-mRNA interactions. The miRNA profiles of 29 patients (16 MI and 13 non-MI) were evaluated. Thirteen VSMC-related miRNAs were differentially expressed between the MI and non-MI groups. Analysis revealed seven miRNA-targeted mRNAs related to muscular tissue differentiation and proliferation. TargetScan revealed that among the VSMC-related transcripts, MBNL1 had a recognition site that matched the hsa-miR-30b-5p target seed sequence. In addition to predicted analysis, our experiment in vitro with human VSMC culture confirmed that hsa-miR-30b-5p negatively correlated with MBNL1. Our data showed that overexpression of hsa-miR-30b-5p led to downregulation of MBNL1 in VSMCs. This process influences VSMC proliferation and might be involved in VSMC differentiation.
Asunto(s)
Diferenciación Celular/genética , Enfermedad de la Arteria Coronaria/etiología , MicroARNs/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Anciano , Comorbilidad , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Myocardial infarction (MI) induced by acute coronary arterial occlusion is usually secondary to atherosclerotic plaque rupture. Dysregulated response of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques may promote plaque rupture. Cadherins (CDHs) form adherens junctions and are known stabilizers of atherosclerotic plaques. To date, the expression patterns of cadherin have not been well investigated in MI aortic VSMCs. We aimed to investigate the expression of cadherin genes in the aortic wall of patients with and without MI. Laser capture microdissected VSMCs were obtained from aortic tissue samples of patients undergoing coronary artery bypass graft surgery. Integrative bioinformatic analysis of the microarray profiles of the VSMCs revealed that MI is discriminated at the whole transcriptome level by hundreds of differentially expressed genes, including genes involved in cell adhesion, of which the cadherin superfamily genes were among the top structural category. Eleven significantly deregulated candidates of the cadherin superfamily were chosen and formed a new classifier that collectively discriminated MI vs. non-MI with ~95% accuracy. Significance validation was performed with an independent cohort by quantitative RT-quantitative PCR, confirming overexpression of CDH2, CDH12, PCDH17, and PCDH18 in MI VSMCs. The dysregulation of these cadherin superfamily genes might be related to an MI-induced remote effect on aortic wall VSMCs and to imbalances in signaling pathways and myocardial repair mechanisms. Although pathophysiological significance of our findings requires functional studies, mRNA upregulation of the identified cadherin superfamily members in VSMCs might be associated with the progression of atherosclerosis and angiogenesis activation in MI.
Asunto(s)
Cadherinas/genética , Perfilación de la Expresión Génica/métodos , Infarto del Miocardio/genética , Miocitos del Músculo Liso/metabolismo , Regulación hacia Arriba , Aorta/patología , Células Cultivadas , Progresión de la Enfermedad , Ontología de Genes , Humanos , Músculo Liso Vascular/patología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Isoformas de Proteínas/genéticaRESUMEN
We sequenced the virus genomes from 3 pregnant women in Thailand with Zika virus diagnoses. All had infections with the Asian lineage. The woman infected at gestational week 9, and not those infected at weeks 20 and 24, had a fetus with microcephaly. Asian lineage Zika viruses can cause microcephaly.
Asunto(s)
Microcefalia/diagnóstico , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika/aislamiento & purificación , Femenino , Humanos , Recién Nacido , Microcefalia/etiología , Embarazo , Primer Trimestre del Embarazo , Tailandia , Virus Zika/genéticaAsunto(s)
Antiinfecciosos , Corioamnionitis , Nanoporos , Humanos , Femenino , Bacterias , Corioamnionitis/microbiología , Líquido Amniótico/microbiologíaRESUMEN
Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identification of CDI and can assist in characterization of the most probable causative strain in CDI patients.