Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Trends Cell Biol ; 8(5): 193-7, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9695838

RESUMEN

Several previously characterized transcriptional adaptors and coactivators are now known to be histone acetyltransferases (HATs). Recent studies in Saccharomyces cerevisiae indicate that the Gcn5p HAT exists in large complexes containing several phenotypic classes of transcription factors. Genetic and biochemical studies of these transcription factors and their functions within HAT complexes suggest that acetylation of histones is one function of an integrated system of modular activities. These activities include interaction with activators, histone acetylation and interaction with basal factors. Coordination of these functions may well be an important component of gene activation in vivo.


Asunto(s)
Acetiltransferasas/fisiología , Cromatina/fisiología , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/fisiología , Animales , Cromatina/metabolismo , Histona Acetiltransferasas , Humanos , Sustancias Macromoleculares , Modelos Biológicos , Factores de Transcripción/química
2.
Science ; 258(5089): 1780-4, 1992 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-1465613

RESUMEN

In order to function, transcription factors must compete for DNA binding with structural components of chromatin, including nucleosomes. Mechanisms that could be used in this competition have been characterized with the use of the DNA binding domain of the yeast GAL4 protein. The binding of GAL4 to a nucleosome core resulted in a ternary complex containing GAL4, the core histone proteins, and DNA. This ternary complex was unstable; upon the addition of nonspecific competitor DNA, it dissociated into either the original nucleosome core particle or GAL4 bound to naked DNA. Nucleosome core destabilization by GAL4 did not require a transcriptional activation domain. These data demonstrate the displacement of nucleosome cores as a direct result of binding by a regulatory factor. Similar mechanisms might affect the establishment of factor occupancy of promoters and enhancers in vivo.


Asunto(s)
Proteínas Fúngicas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencia de Bases , ADN/genética , ADN/aislamiento & purificación , ADN/metabolismo , Proteínas de Unión al ADN , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/aislamiento & purificación , Células HeLa , Histonas/aislamiento & purificación , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Reacción en Cadena de la Polimerasa/métodos , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/aislamiento & purificación
3.
Science ; 265(5168): 53-60, 1994 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8016655

RESUMEN

The SWI/SNF protein complex is required for the enhancement of transcription by many transcriptional activators in yeast. Here it is shown that the purified SWI/SNF complex is composed of 10 subunits and includes the SWI1, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products. The complex exhibited DNA-stimulated adenosine triphosphatase (ATPase) activity, but lacked helicase activity. The SWI/SNF complex caused a 10- to 30-fold stimulation in the binding of GAL4 derivatives to nucleosomal DNA in a reaction that required adenosine triphosphate (ATP) hydrolysis but was activation domain-independent. Stimulation of GAL4 binding by the complex was abolished by a mutant SWI2 subunit, and was increased by the presence of a histone-binding protein, nucleoplasmin. A direct ATP-dependent interaction between the SWI/SNF complex and nucleosomal DNA was detected. These observations suggest that a primary role of the SWI/SNF complex is to promote activator binding to nucleosomal DNA.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , ADN Helicasas/metabolismo , Sondas de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Nucleoplasminas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Transcripción Genética
4.
Science ; 273(5274): 513-6, 1996 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-8662543

RESUMEN

The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Sitios de Unión , ADN de Hongos/metabolismo , Desoxirribonucleasa I/metabolismo , Histonas/metabolismo , Datos de Secuencia Molecular , Nucleosomas/ultraestructura , Saccharomyces cerevisiae
5.
Science ; 292(5525): 2333-7, 2001 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-11423663

RESUMEN

Promoter-specific recruitment of histone acetyltransferase activity is often critical for transcriptional activation. We present a detailed study of the interaction between the histone acetyltransferase complexes SAGA and NuA4, and transcription activators. We demonstrate by affinity chromatography and photo-cross-linking label transfer that acidic activators directly interact with Tra1p, a shared subunit of SAGA and NuA4. Mutations within the COOH-terminus of Tra1p disrupted its interaction with activators and resulted in gene-specific transcriptional defects that correlated with lowered promoter-specific histone acetylation. These data demonstrate that the essential Tra1 protein serves as a common target for activators in both SAGA and NuA4 acetyltransferases.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Transactivadores/metabolismo , Factor de Transcripción TFIID , Activación Transcripcional , Acetilación , Acetiltransferasas/química , Alelos , Factor de Unión a CCAAT/metabolismo , Reactivos de Enlaces Cruzados , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas , Histonas/metabolismo , Mutación , Regiones Promotoras Genéticas , Proteínas Quinasas/metabolismo , Subunidades de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura , Factores de Transcripción/metabolismo , Levaduras/genética , Levaduras/metabolismo
6.
Trends Biochem Sci ; 18(3): 90-5, 1993 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8480368

RESUMEN

The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.


Asunto(s)
Regulación de la Expresión Génica , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila , Saccharomyces cerevisiae , Factores de Transcripción/genética
7.
Trends Biochem Sci ; 25(1): 15-9, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10637607

RESUMEN

Histone acetylation is closely linked to gene transcription. The identification of histone acetyltransferases (HATs) and the large multiprotein complexes in which they reside has yielded important insights into how these enzymes regulate transcription. The demonstration that HAT complexes interact with sequence-specific activator proteins illustrates how these complexes target specific genes. In addition to histones, some HATs can acetylate non-histone proteins suggesting multiple roles for these enzymes.


Asunto(s)
Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcripción Genética , Animales , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas , Humanos , Especificidad por Sustrato , Transactivadores/metabolismo , Levaduras/genética , Levaduras/metabolismo
8.
Curr Opin Genet Dev ; 10(2): 187-92, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10753786

RESUMEN

The SWI/SNF complex is a 2 MDa multi-subunit DNA-dependent ATPase that contributes to the regulation of gene transcription by altering chromatin structure. Recent studies have revealed that the SWI/SNF complex is targeted to promoters via direct interactions with transcription activators and have provided insights into mechanisms by which the complex alters nucleosome structure and contributes to the remodeling of chromatin.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromatina/enzimología , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/genética , Adenosina Trifosfatasas/metabolismo , Animales , Cromatina/metabolismo , ADN Helicasas , Proteínas de Unión al ADN/metabolismo , Humanos , Sustancias Macromoleculares , Factores de Transcripción/metabolismo
9.
Mol Cell Biol ; 15(3): 1405-21, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7862134

RESUMEN

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Escherichia coli , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , FN-kappa B/metabolismo , Oligodesoxirribonucleótidos , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Factores de Transcripción/biosíntesis , Factores Estimuladores hacia 5'
10.
Mol Cell Biol ; 17(10): 5833-42, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9315641

RESUMEN

Upstream binding factor (UBF) is a vertebrate RNA polymerase I transcription factor that can bend and wrap DNA. To investigate UBF's likely role as an architectural protein of rRNA genes organized in chromatin, we tested UBF's ability to bind rRNA gene enhancers assembled into nucleosome cores (DNA plus core histones) and nucleosomes (DNA plus core histones plus histone H1). UBF bound with low affinity to nucleosome cores formed with enhancer DNA probes of 162 bp. However, on nucleosome cores which contained approximately 60 bp of additional linker DNA, UBF bound with high affinity similar to its binding to naked DNA, forming a ternary DNA-core histone-UBF complex. UBF could be stripped from ternary complexes with competitor DNA to liberate nucleosome cores, rather than free DNA, suggesting that UBF binding to nucleosome cores does not displace the core histones H2A, H2B, H3, and H4. DNase I, micrococcal nuclease, and exonuclease III footprinting suggests that UBF and histone H1 interact with DNA on both sides flanking the histone octamer. Footprinting shows that UBF outcompetes histone H1 for binding to a nucleosome core and will displace, if not dissociate, H1 from its binding site on a preassembled nucleosome. These data suggest that UBF may act to prevent or reverse the assembly of transcriptionally inactive chromatin structures catalyzed by linker histone binding.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Factores de Transcripción/metabolismo , Animales , Unión Competitiva , Línea Celular , ADN/metabolismo , Huella de ADN , Sondas de ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Riñón/citología , Unión Proteica , ARN Polimerasa I , Xenopus laevis , Operón de ARNr/genética
11.
Mol Cell Biol ; 14(2): 970-81, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8289837

RESUMEN

Facilitated, "cooperative" binding of GAL4-AH to nucleosomal DNA occurred in response to inhibition from the core histone amino termini. The binding of GAL4-AH (which contains the DNA-binding and dimerization domains of GAL4) to nucleosome cores containing multiple binding sites initiated at the end of a nucleosome core and proceeded in a cooperative manner until all sites were occupied. However, following tryptic removal of the core histone amino termini, GAL4-AH binding appeared to be noncooperative, similar to binding naked DNA. Binding of GAL4-AH to nucleosomes bearing a single GAL4 site at different positions indicated that inhibition of GAL4 binding was largely mediated by the histone amino termini and primarily occurred at sites well within the core and not near the end. When the histone amino termini were intact, binding of GAL4-AH to sites near the center of a nucleosome core was greatly enhanced by the presence of additional GAL4 dimers bound to more-accessible positions. These data illustrate that the binding of a factor to more-accessible sites, near the end of a nucleosome, allows facilitated binding of additional factors to the center of the nucleosome, thereby overcoming repression from the core histone amino termini. This mechanism may contribute to the binding of multiple factors to complex promoter and enhancer elements in cellular chromatin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Proteínas de Unión al ADN/aislamiento & purificación , Cinética , Sustancias Macromoleculares , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo , Mapeo Restrictivo , Saccharomyces cerevisiae/genética
12.
Mol Cell Biol ; 15(11): 6178-87, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7565770

RESUMEN

To investigate the mechanisms by which transcription factors invade nucleosomal DNA and replace histones at control elements, we have examined the response of the histone octamer to transcription factor binding in the presence of histone-binding proteins (i.e., nucleosome assembly factors). We found that yeast nucleosome assembly protein 1 (NAP-1) stimulated transcription factor binding and nucleosome displacement in a manner similar to that of nucleoplasmin. In addition, disruption of the histone octamer was required both for the stimulation of transcription factor binding to nucleosomal DNA and for transcription factor-induced nucleosome displacement mediated by nucleoplasmin or NAP-1. While NAP-1 and nucleoplasmin stimulated the binding of a fusion protein (GAL4-AH) to control nucleosome cores, this stimulation was lost upon covalent histone-histone cross-linking within the histone octamers. In addition, both NAP-1 and nucleoplasmin were able to mediate histone displacement upon the binding of five GAL4-AH dimers to control nucleosome cores; however, this activity was also forfeited when the histone octamers were cross-linked. These data indicate that octamer disruption is required for both stimulation of factor binding and factor-dependent histone displacement by nucleoplasmin and NAP-1. By contrast, transcription factor-induced histone transfer onto nonspecific competitor DNA did not require disruption of the histone octamer. Thus, histone displacement in this instance occurred by transfer of complete histone octamers, a mechanism distinct from that mediated by the histone-binding proteins nucleoplasmin and NAP-1.


Asunto(s)
Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/ultraestructura , Fosfoproteínas , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Secuencia de Bases , Unión Competitiva , Proteínas de Ciclo Celular , Sondas de ADN/química , Proteínas de Unión al ADN , Desoxirribonucleoproteínas/química , Células HeLa , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Nucleoplasminas , Proteína 1 de Ensamblaje de Nucleosomas
13.
Mol Cell Biol ; 19(1): 855-63, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9858608

RESUMEN

Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcripción Genética , Acetilación , Sitios de Unión , Activación Enzimática , Proteína Vmw65 de Virus del Herpes Simple/genética , Histona Acetiltransferasas , Nucleosomas , Moldes Genéticos , Activación Transcripcional
14.
Mol Cell Biol ; 20(6): 2004-13, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10688647

RESUMEN

The SWI-SNF complex has been shown to alter nucleosome conformation in an ATP-dependent manner, leading to increased accessibility of nucleosomal DNA to transcription factors. In this study, we show that the SWI-SNF complex can potentiate the activity of the glucocorticoid receptor (GR) through the N-terminal transactivation domain, tau1, in both yeast and mammalian cells. GR-tau1 can directly interact with purified SWI-SNF complex, and mutations in tau1 that affect the transactivation activity in vivo also directly affect tau1 interaction with SWI-SNF. Furthermore, the SWI-SNF complex can stimulate tau1-driven transcription from chromatin templates in vitro. Taken together, these results support a model in which the GR can directly recruit the SWI-SNF complex to target promoters during glucocorticoid-dependent gene activation. We also provide evidence that the SWI-SNF and SAGA complexes represent independent pathways of tau1-mediated activation but play overlapping roles that are able to compensate for one another under some conditions.


Asunto(s)
Cromatina/genética , Receptores de Glucocorticoides/fisiología , Transducción de Señal/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Línea Celular , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular , Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Activación Transcripcional , Transfección
15.
Mol Cell Biol ; 18(3): 1349-58, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9488450

RESUMEN

GCN5, a putative transcriptional adapter in humans and yeast, possesses histone acetyltransferase (HAT) activity which has been linked to GCN5's role in transcriptional activation in yeast. In this report, we demonstrate a functional interaction between human GCN5 (hGCN5) and the DNA-dependent protein kinase (DNA-PK) holoenzyme. Yeast two-hybrid screening detected an interaction between the bromodomain of hGCN5 and the p70 subunit of the human Ku heterodimer (p70-p80), which is the DNA-binding component of DNA-PK. Interaction between intact hGCN5 and Ku70 was shown biochemically using recombinant proteins and by coimmunoprecipitation of endogenous proteins following chromatography of HeLa nuclear extracts. We demonstrate that the catalytic subunit of DNA-PK phosphorylates hGCN5 both in vivo and in vitro and, moreover, that the phosphorylation inhibits the HAT activity of hGCN5. These findings suggest a possible regulatory mechanism of HAT activity.


Asunto(s)
Acetiltransferasas/metabolismo , Antígenos Nucleares , Coenzimas/metabolismo , ADN Helicasas , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetiltransferasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Fraccionamiento Celular , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Células HeLa , Histona Acetiltransferasas , Humanos , Autoantígeno Ku , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Tumorales Cultivadas
16.
Mol Cell Biol ; 19(2): 1470-8, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9891080

RESUMEN

To understand the mechanisms by which the chromatin-remodeling SWI/SNF complex interacts with DNA and alters nucleosome organization, we have imaged the SWI/SNF complex with both naked DNA and nucleosomal arrays by using energy-filtered microscopy. By making ATP-independent contacts with DNA at multiple sites on its surface, SWI/SNF creates loops, bringing otherwise-distant sites into close proximity. In the presence of ATP, SWI/SNF action leads to the disruption of nucleosomes within domains that appear to be topologically constrained by the complex. The data indicate that the action of one SWI/SNF complex on an array of nucleosomes can lead to the formation of a region where multiple nucleosomes are disrupted. Importantly, nucleosome disruption by SWI/SNF results in a loss of DNA content from the nucleosomes. This indicates a mechanism by which SWI/SNF unwraps part of the nucleosomal DNA.


Asunto(s)
ADN/química , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Polirribosomas/química , Polirribosomas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Pollos , ADN/ultraestructura , Células HeLa , Histonas/ultraestructura , Humanos , Técnicas In Vitro , Sustancias Macromoleculares , Microscopía Electrónica/métodos , Polirribosomas/ultraestructura , Espectrofotometría/métodos , Factores de Transcripción/ultraestructura
17.
Mol Cell Biol ; 19(9): 5952-9, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10454542

RESUMEN

Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, tau1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-tau1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in tau1 that reduce tau1 transactivation activity in vivo lead to a reduced binding of tau1 to the SAGA complex and conversely, mutations increasing the transactivation activity of tau1 lead to an increased binding of tau1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with tau1. GAL4-tau1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity tau1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity tau1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-tau1 activation domain mediates transcriptional stimulation from chromatin templates.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Unión al ADN , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas de Saccharomyces cerevisiae , Activación Transcripcional , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Histona Acetiltransferasas , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Mutación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
18.
Mol Cell Biol ; 19(10): 6621-31, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10490601

RESUMEN

We have identified two Gcn5-dependent histone acetyltransferase (HAT) complexes from Saccharomyces cerevisiae, the 0.8-MDa ADA complex and the 1.8-MDa SAGA complex. The SAGA (Spt-Ada-Gcn5-acetyltransferase) complex contains several subunits which also function as part of other protein complexes, including a subset of TATA box binding protein-associated factors (TAFIIs) and Tra1. These observations raise the question of whether the 0.8-MDa ADA complex is a subcomplex of SAGA or whether it is a distinct HAT complex that also shares subunits with SAGA. To address this issue, we sought to determine if the ADA complex contained subunits that are not present in the SAGA complex. In this study, we report the purification of the ADA complex over 10 chromatographic steps. By a combination of mass spectrometry analysis and immunoblotting, we demonstrate that the adapter proteins Ada2, Ada3, and Gcn5 are indeed integral components of ADA. Furthermore, we identify the product of the S. cerevisiae gene YOR023C as a novel subunit of the ADA complex and name it Ahc1 for ADA HAT complex component 1. Biochemical functions of YOR023C have not been reported. However, AHC1 in high copy numbers suppresses the cold sensitivity caused by particular mutations in HTA1 (I. Pinto and F. Winston, personal communication), which encodes histone H2A (J. N. Hirschhorn et al., Mol. Cell. Biol. 15:1999-2009, 1995). Deletion of AHC1 disrupted the integrity of the ADA complex but did not affect SAGA or give rise to classic Ada(-) phenotypes. These results indicate that Gcn5, Ada2, and Ada3 function as part of a unique HAT complex (ADA) and represent shared subunits between this complex and SAGA.


Asunto(s)
Acetiltransferasas/aislamiento & purificación , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Proteínas Fúngicas/aislamiento & purificación , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/aislamiento & purificación , Secuencia de Aminoácidos , Eliminación de Gen , Genes Fúngicos , Histona Acetiltransferasas , Espectrometría de Masas , Datos de Secuencia Molecular , Fenotipo , Proteínas Quinasas/aislamiento & purificación , Análisis de Secuencia de Proteína
19.
Mol Cell Biol ; 19(1): 86-98, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9858534

RESUMEN

SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Delta spt3Delta and gcn5Delta spt8Delta) causing loss of a member of each of the moderate classes have severe phenotypes, similar to spt7Delta, spt20Delta, or ada1Delta mutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/fisiología , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas , Sustancias Macromoleculares , Mutagénesis , Nucleosomas , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteína de Unión a TATA-Box , Transactivadores/metabolismo , Factores de Transcripción/genética
20.
Mol Cell Biol ; 19(3): 2061-8, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10022893

RESUMEN

Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be approximately 80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena.


Asunto(s)
Acetiltransferasas/metabolismo , Nucleosomas/enzimología , Proteínas de Saccharomyces cerevisiae , Tetrahymena thermophila/enzimología , Acetilación , Acetiltransferasas/aislamiento & purificación , Animales , Catálisis , Cromatina , Cromatografía Líquida de Alta Presión , Células HeLa , Histona Acetiltransferasas , Humanos , Moldes Genéticos , Transcripción Genética , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA