Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phys Chem Chem Phys ; 25(14): 10184, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946419

RESUMEN

Correction for '5D total scattering computed tomography reveals the full reaction mechanism of a bismuth vanadate lithium ion battery anode' by Jonas Sottmann et al., Phys. Chem. Chem. Phys., 2022, 24, 27075-27085, https://doi.org/10.1039/D2CP03892G.

2.
Nanotechnology ; 33(18)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35078157

RESUMEN

Based on the same rocking-chair principle as rechargeable Li-ion batteries, Na-ion batteries are promising solutions for energy storage benefiting from low-cost materials comprised of abundant elements. However, despite the mechanistic similarities, Na-ion batteries require a different set of active materials than Li-ion batteries. Bismuth molybdate (Bi2MoO6) is a promising NIB anode material operating through a combined conversion/alloying mechanism. We report anoperandox-ray diffraction (XRD) investigation of Bi2MoO6-based anodes over 34 (de)sodiation cycles revealing both basic operating mechanisms and potential pathways for capacity degradation. Irreversible conversion of Bi2MoO6to Bi nanoparticles occurs through the first sodiation, allowing Bi to reversibly alloy with Na forming the cubic Na3Bi phase. Preliminary electrochemical evaluation in half-cellsversusNa metal demonstrated specific capacities for Bi2MoO6to be close to 300 mAh g-1during the initial 10 cycles, followed by a rapid capacity decay.OperandoXRD characterisation revealed that the increased irreversibility of the sodiation reactions and the formation of hexagonal Na3Bi are the main causes of the capacity loss. This is initiated by an increase in crystallite sizes of the Bi particles accompanied by structural changes in the electronically insulating Na-Mo-O matrix leading to poor conductivity in the electrode. The poor electronic conductivity of the matrix deactivates the NaxBi particles and prevents the formation of the solid electrolyte interface layer as shown by post-mortem scanning electron microscopy studies.

3.
Phys Chem Chem Phys ; 24(44): 27075-27085, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36326039

RESUMEN

We have used operando 5D synchrotron total scattering computed tomography (TSCT) to understand the cycling and possible long term deactivation mechanisms of the lithium-ion battery anode bismuth vanadate. This anode material functions via a combined conversion/alloying mechanism in which nanocrystals of lithium-bismuth alloy are protected by an amorphous matrix of lithium vanadate. This composite is formed in situ during the first lithiation of the anode. The operando TSCT data were analyzed and mapped using both pair distribution function and Rietveld methods. We can follow the lithium-bismuth alloying reaction at all stages, gaining real structural insight including variations in nanoparticle sizes, lattice parameters and bond lengths, even when the material is completely amorphous. We also observe for the first time structural changes related to the cycling of lithium ions in the lithium vanadate matrix, which displays no interactions beyond the first shell of V-O bonds. The first 3D operando mapping of the distribution of different materials in an amorphous anode reveals a decline in coverage caused by either agglomeration or partial dissolution of the active material, hinting at the mechanism of long term deactivation. The observations from the operando experiment are backed up by post mortem transmission electron microscope (TEM) studies and theoretical calculations to provide a complete picture of an exceptionally complex cycling mechanism across a range of length scales.

4.
Eur J Inorg Chem ; 2021(46): 4762-4775, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-35874966

RESUMEN

A series of Cu(I) complexes of bidentate or tetradentate Schiff base ligands bearing either 1-H-imidazole or pyridine moieties were synthesized. The complexes were studied by a combination of NMR and X-ray spectroscopic techniques. The differences between the imidazole- and pyridine-based ligands were examined by 1H, 13C and 15N NMR spectroscopy. The magnitude of the 15Nimine coordination shifts was found to be strongly affected by the nature of the heterocycle in the complexes. These trends showed good correlation with the obtained Cu-Nimine bond lengths from single-crystal X-ray diffraction measurements. Variable-temperature NMR experiments, in combination with diffusion ordered spectroscopy (DOSY) revealed that one of the complexes underwent a temperature-dependent interconversion between a monomer, a dimer and a higher aggregate. The complexes bearing tetradentate imidazole ligands were further studied using Cu K-edge XAS and VtC XES, where DFT-assisted assignment of spectral features suggested that these complexes may form polynuclear oligomers in solid state. Additionally, the Cu(II) analogue of one of the complexes was incorporated into a metal-organic framework (MOF) as a way to obtain discrete, mononuclear complexes in the solid state.

5.
Molecules ; 25(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143211

RESUMEN

Small pore zeolites have shown great potential in a number of catalytic reactions. While Mo-containing medium pore zeolites have been widely studied for methane dehydroaromatisation (MDA), the use of small pore supports has drawn limited attention due to the fast deactivation of the catalyst. This work investigates the structure of the small pore Mo/H-SSZ-13 during catalyst preparation and reaction by operando X-ray absorption spectroscopy (XAS), in situ synchrotron powder diffraction (SPD), and electron microscopy; then, the results are compared with the medium pore Mo/H-ZSM-5. While SPD suggests that during catalyst preparation, part of the MoOx anchors inside the pores, Mo dispersion and subsequent ion exchange was less effective in the small pore catalyst, resulting in the formation of mesopores and Al2(MOO4)3 particles. Unlike Mo/H-ZSM-5, part of the Mo species in Mo/H-SSZ-13 undergoes full reduction to Mo0 during MDA, whereas characterisation of the spent catalyst indicates that differences also exist in the nature of the formed carbon deposits. Hence, the different Mo speciation and the low performance on small pore zeolites can be attributed to mesopores formation during calcination and the ineffective ion exchange into well dispersed Mo-oxo sites. The results open the scope for the optimisation of synthetic routes to explore the potential of small pore topologies.


Asunto(s)
Metano/química , Molibdeno/química , Zeolitas/química , Catálisis , Porosidad
6.
Chemphyschem ; 19(4): 519-528, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29077254

RESUMEN

In situ flow magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and synchrotron-based pair distribution function (PDF) analyses were applied to study water's interactions with the Brønsted acidic site and the surrounding framework in the SAPO-34 catalyst at temperatures up to 300 °C for NMR spectroscopy and 700 °C for PDF. 29 Si enrichment of the sample enabled detailed NMR spectroscopy investigations of the T-atom generating the Brønsted site. By NMR spectroscopy, we observed dehydration above 100 °C and a coalescence of Si peaks due to local framework adjustments. Towards 300 °C, the NMR spectroscopy data indicated highly mobile acidic protons. In situ total X-ray scattering measurements analyzed by PDF showed clear changes in the Al local environment in the 250-300 °C region, as the Al-O bond lengths showed a sudden change. This fell within the same temperature range as the increased Brønsted proton mobility. We suggest that the active site in this catalyst under industrial conditions comprises not only the Brønsted proton but also SiO4 . To the best of our knowledge, this is the first work proposing a structural model of a SAPO catalyst by atomic PDF analysis. The combination of synchrotron PDF analysis with in situ NMR spectroscopy is promising in revealing the dynamic features of a working catalyst.

8.
Angew Chem Int Ed Engl ; 56(38): 11385-11389, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28650527

RESUMEN

To improve lithium and sodium ion battery technology, it is imperative to understand how the properties of the different components are controlled by their chemical structures. Operando structural studies give us some of the most useful information for understanding how batteries work, but it remains difficult to separate out the contributions of the various components of a battery stack (e.g., electrodes, current collectors, electrolyte, and binders) and examine specific materials. We have used operando X-ray diffraction computed tomography (XRD-CT) to study specific components of an essentially unmodified working cell and extract detailed, space-resolved structural information on both crystalline and amorphous phases that are present during cycling by Rietveld and pair distribution function (PDF) methods. We illustrate this method with the first detailed structural examination of the cycling of sodium in a phosphorus anode, revealing surprisingly different mechanisms for sodiation and desodiation in this promising, high-capacity anode system.

9.
Chem Sci ; 15(8): 2745-2754, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404401

RESUMEN

Li intercalation and graphite stacking have been extensively studied because of the importance of graphite in commercial Li-ion batteries. Despite this attention, there are still questions about the atomistic structures of the intermediate states that exist during lithiation, especially when phase dynamics cause a disordered Li distribution. The Li migration event (diffusion coefficient of 10-5 nm2 ns-1) makes it difficult to explore the various Li-intercalation configurations in conventional molecular dynamics (MD) simulations with an affordable simulation timescale. To overcome these limitations, we conducted a comprehensive study using replica-exchange molecular dynamics (REMD) in combination with the ReaxFF force field. This approach allowed us to study the behavior of Li-intercalated graphite from any starting arrangement of Li at any value of x in LixC6. Our focus was on analyzing the energetic favorability differences between the relaxed structures. We rationalized the trends in formation energy on the basis of observed structural features, identifying three main structural features that cooperatively control Li rearrangement in graphite: Li distribution, graphite stacking mode and gallery height (graphene layer spacing). We also observed a tendency for clustering of Li, which could lead to dynamic local structures that approximate the staging models used to explain intercalation into graphite.

10.
ACS Appl Mater Interfaces ; 16(10): 12428-12436, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412363

RESUMEN

Development of new anode materials for Na-ion batteries strongly depends on a detailed understanding of their cycling mechanism. Due to instrumental limitations, the majority of mechanistic studies focus on operando materials' characterization at low cycling rates. In this work, we evaluate and compare the (de)sodiation mechanisms of BiFeO3 in Na-ion batteries at different current densities using operando X-ray diffraction (XRD) and ex situ X-ray absorption spectroscopy (XAS). BiFeO3 is a conversion-alloying anode material with a high initial sodiation capacity of ∼600 mAh g-1, when cycled at 0.1 A g-1. It does not change its performance or cycling mechanism, except for minor losses in capacity, when the current density is increased to 1 A g-1. In addition, operando XRD characterization carried out over multiple cycles shows that the Bi ⇋ NaBi (de)alloying reaction and the oxidation of Bi at the interface with the Na-Fe-O matrix are detrimental for cycling stability. The isolated NaBi ⇋ Na3Bi reaction is less damaging to the cycling stability of the material.

11.
Chem Mater ; 36(15): 7514-7524, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39156715

RESUMEN

Operando characterization can reveal degradation processes in battery materials and are essential for the development of battery chemistries. This study reports the first use of quasi-simultaneous operando pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) of a battery cell, providing a detailed, atomic-level understanding of the cycling mechanism of Bi2MoO6 as an anode material for Na-ion batteries. This material cycles via a combined conversion-alloying reaction, where electrochemically active, nanocrystalline Na x Bi particles embedded in an amorphous Na-Mo-O matrix are formed during the first sodiation. The combination of operando PDF and XAS revealed that Bi obtains a positive oxidation state at the end of desodiation, due to formation of Bi-O bonds at the interface between the Bi particles and the Na-Mo-O matrix. In addition, XAS confirmed that Mo has an average oxidation state of +6 throughout the (de)sodiation process and, thus, does not contribute to the capacity. However, the local environment of Mo6+ changes from tetrahedral coordination in the desodiated state to distorted octahedral in the sodiated state. These structural changes are linked to the poor cycling stability of Bi2MoO6, as flexibility of this matrix allows movement and coalescence of the Na x Bi particles, which is detrimental to the electrochemical stability.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39005115

RESUMEN

The atomic pair distribution function (PDF) is a real-space representation of the structure of a material. Experimental PDFs are obtained using a Fourier transform from total scattering data which may or may not have Bragg diffraction peaks. The determination of Bragg peak resolution in scattering data from the fundamental physical parameters of the diffractometer used is well established, but after the Fourier transform from reciprocal to direct space, these contributions are harder to identify. Starting from an existing definition of the resolution function of large-area detectors for X-ray diffraction, this approach is expanded into direct space. The effect of instrumental parameters on PDF peak resolution is developed mathematically, then studied with modelling and comparison with experimental PDFs of LaB6 from measurements made in different-sized capillaries.

13.
Dalton Trans ; 53(19): 8141-8153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483202

RESUMEN

Metal-organic frameworks (MOFs) featuring zirconium-based clusters are widely used for the development of functionalized materials due to their exceptional stability. In this study, we report the synthesis of a novel N,N,N-ligand compatible with a biphenyl dicarboxylic acid-based MOF. However, the resulting copper(I) complex exhibited unexpected coordination behaviour, lacking the intended trifold coordination motif. Herein, we demonstrate the successful immobilization of a bioinspired ligand within the MOF, which preserved its crystalline and porous nature while generating a well-defined copper site. Comprehensive spectroscopic analyses, including X-ray absorption, UV/Vis, and infrared spectroscopy, were conducted to investigate the copper site and its thermal behaviour. The immobilized ligand exhibited the desired tridentate coordination to copper, providing access to a coordination motif otherwise unattainable. Notably, water molecules were also found to coordinate to copper. Upon heating, the copper centre within the MOF exhibited reversible dehydration, suggesting facile creation of open coordination sites. Furthermore, the copper site displayed reduction at elevated temperatures and subsequent susceptibility to oxidation by molecular oxygen. Lastly, both the molecular complexes and the MOF were evaluated as catalysts for the oxidation of cyclohexane using hydrogen peroxide. This work highlights the successful immobilization of a bioinspired ligand in a zirconium-based MOF, shedding light on the structural features, thermal behaviour, and catalytic potential of the resulting copper sites.

14.
Phys Chem Chem Phys ; 15(22): 8662-71, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23575962

RESUMEN

The methanol to gasoline process over the zeolite catalyst ZSM-5 in a lab-sized reactor bed (4 mm diameter) has been studied in operando with high energy synchrotron X-ray diffraction. The fast z-scan method was used, scanning the reactor repeatedly and at speed through the X-ray beam. The X-ray diffraction data were processed using high throughput parametric Rietveld refinement to obtain real structural parameters. The diffraction data show only very subtle changes during the process and this allows us to demonstrate the combination of very large data volumes with parametric Rietveld methods to study weak features of the data. The different possible data treatment methodologies are discussed in detail and their effects on the results obtained are demonstrated. The trends in unit cell volume, zeolite channel occupancy and crystallite strain indicate that more or larger reaction intermediates are present close to the reactor outlet.


Asunto(s)
Gasolina , Metanol/química , Zeolitas/química , Catálisis , Difracción de Rayos X
15.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37110901

RESUMEN

Sunlight-driven photocatalytic degradation is an effective and eco-friendly technology for the removal of organic pollutants from contaminated water. Herein, we describe the one-step synthesis of Cu-Cu2O-Cu3N nanoparticle mixtures using a novel non-aqueous, sol-gel route and their application in the solar-driven photocatalytic degradation of methylene blue. The crystalline structure and morphology were investigated with XRD, SEM and TEM. The optical properties of the as-prepared photocatalysts were investigated with Raman, FTIR, UV-Vis and photoluminescence spectroscopies. The influence of the phase proportions of Cu, Cu2O and Cu3N in the nanoparticle mixtures on the photocatalytic activity was also investigated. Overall, the sample containing the highest quantity of Cu3N exhibits the highest photocatalytic degradation efficiency (95%). This enhancement is attributed to factors such as absorption range broadening, increased specific surface of the photocatalysts and the downward band bending in the p-type semiconductors, i.e., Cu3N and Cu2O. Two different catalytic dosages were studied, i.e., 5 mg and 10 mg. The higher catalytic dosage exhibited lower photocatalytic degradation efficiency owing to the increase in the turbidity of the solution.

16.
Inorg Chem ; 51(22): 12540-7, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23140328

RESUMEN

The system Cu(2+)/H2O3P-C2H4-SO3H/NaOH was investigated using in situ energy dispersive X-ray diffraction (EDXRD) to study the formation and temperature induced phase transformation of previously described copper phosphonosulfonates. Thus, the formation of [Cu2(O3P-C2H4-SO3)(OH)(H2O)]·3H2O (4) at 90 °C is shown to proceed via a previously unknown intermediate [Cu2(O3P-C2H4-SO3)(OH)(H2O)]·4H2O (6), which could be structurally characterized from high resolution powder diffraction data. Increase of the reaction temperature to 150 °C led to a rapid phase transformation to [Cu2(O3P-C2H4-SO3)(OH)(H2O)]·H2O (1), which was also studied by in situ EDXRD. The comparison of the structures of 1, 4, and 6 allowed us to establish a possible reaction mechanism. In addition to the in situ crystallization studies, microwave assisted heating for the synthesis of the copper phosphonosulfonates was employed, which allowed the growth of larger crystals of [NaCu(O3P-C2H4-SO3)(H2O)2] (5) suitable for single crystal X-ray diffraction. Through the combination of force field calculations and Rietveld refinement we were able to determine the crystal structure of [Cu1.5(O3P-C2H4-SO3)] 2H2O (3) and thus structurally characterize all compounds known up to now in this well investigated system. With the additional structural data we are now able to describe the influence of the pH on the structure formation.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Temperatura , Complejos de Coordinación/síntesis química , Cristalización , Concentración de Iones de Hidrógeno , Estructura Molecular , Difracción de Rayos X
17.
Dalton Trans ; 51(13): 5082-5097, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35262546

RESUMEN

Cyclometalated Au(III) complexes are of interest due to their catalytic, medicinal, and photophysical properties. Herein, we describe the synthesis of derivatives of the type (N,C)Au(OAcF)2 (OAcF = trifluoroacetate) and (N,C,C)AuOAcF by a cyclometalation route, where (N,C) and (N,C,C) are chelating 2-arylpyridine ligands. The scope of the synthesis is explored by substituting the 2-arylpyridine core with electron donor or acceptor substituents at one or both rings. Notably, a variety of functionalized Au(III) complexes can be obtained in one step from the corresponding ligand and Au(OAc)3, eliminating the need for organomercury intermediates, which is commonly reported for similar syntheses. The influence of substituents in the ligand backbone on the resulting complexes was assessed using DFT calculations, 15N NMR spectroscopy and single-crystal X-ray diffraction analysis. A correlation between the electronic properties of the (N,C) ligands and their ability to undergo cyclometalation was found from experimental studies combined with natural charge analysis, suggesting the cyclometalation at Au(III) to take place via an electrophilic aromatic substitution-type mechanism. The formation of Au(III) pincer complexes from tridentate (N,C,C) ligands was investigated by synthesis and DFT calculations, in order to assess the feasibility of C(sp3)-H bond activation as a synthetic pathway to (N,C,C) cyclometalated Au(III) complexes. It was found that C(sp3)-H bond activation is feasible for ligands containing different alkyl groups (isopropyl and ethyl), although the C-H activation is less energetically favored compared to a ligand containing tert-butyl groups.

18.
Dalton Trans ; 51(44): 16845-16851, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36278772

RESUMEN

We have monitored the regeneration of H-ZSM-5 via operando time-resolved powder X-Ray diffraction (PXRD) coupled with mass spectroscopy (MS). Parametric Rietveld refinements and calculation of the extra-framework electronic density by differential Fourier maps analysis provide details on the mode of coke removal combined with the corresponding sub-unit cell changes of the zeolite structure. It is clear that the coke removal is a complex process that occurs in at least two steps; a thermal decomposition followed by oxidation. In a coked zeolite, the straight 10-ring channel circumference is warped to an oval shape due to structural distortion induced by rigid aromatic coke species. The data presented explain why the difference in length between the a-vector and the b-vector of the MFI unit cell is a robust descriptor for bulky coke, as opposed to the unit cell volume, which is affected also by adsorbed species and thermal effects. Our approach holds the promise to quantify and identify coke removal (and formation) in structurally distinct locations within the zeolite framework.

19.
Dalton Trans ; 51(48): 18667-18677, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36448547

RESUMEN

Ba1-xGd1-yLax+yCo2O6-δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is substituted for Ba and Gd. The dominating phase is the double perovskite structure Pmmm, which is A-site ordered along the c-axes and with O vacancy ordering along the b-axis in the Ln-layer. Phases emerging when substituting La for Ba are orthorhombic Ba-deficient Pbnm and cubic LaCoO3-based R3̄c. When La is almost completely substituted for Gd, the material can be stabilised in Pmmm, or cubic Pm3̄m, depending on thermal and atmospheric history. We list thermal expansion coefficients for x = 0-0.3, y = 0.2.

20.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 9): o2326, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22058951

RESUMEN

The mol-ecule of the title compound, C(12)H(9)IN(2), is approximately planar [maximum deviation = 0.020 (5) Å] with a trans arrangement of the groups around the N=N double bond. This double bond is rotated away from the iodine substiuent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA