Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(2): e1009291, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529209

RESUMEN

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/patogenicidad , Cápsulas Bacterianas/fisiología , Fagocitos/virología , Fagocitosis , Polisacáridos Bacterianos/química , Virulencia , Infecciones por Acinetobacter/genética , Infecciones por Acinetobacter/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fagocitos/metabolismo , Células RAW 264.7
2.
Am J Hum Genet ; 105(4): 719-733, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564432

RESUMEN

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.


Asunto(s)
Secuenciación del Exoma , Secuenciación Completa del Genoma , Pruebas Genéticas , Humanos , Lactante , Recién Nacido
4.
J Bacteriol ; 199(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28193905

RESUMEN

Insertion sequence (IS) elements are found throughout bacterial genomes and contribute to genome variation by interrupting genes or altering gene expression. Few of the more than 30 IS elements described in Acinetobacter baumannii have been characterized for transposition activity or expression effects. A targeted sequencing method, IS-seq, was developed to efficiently map the locations of new insertion events in A. baumannii genomes and was used to identify novel IS sites following growth in the presence of hydrogen peroxide, which causes oxidative stress. Serial subculture in the presence of subinhibitory concentrations of hydrogen peroxide led to rapid selection of cells carrying an ISAba1 element upstream of the catalase-peroxidase gene katG Several additional sites for the elements ISAba1, ISAba13, ISAba25, ISAba26, and ISAba125 were found at low abundance after serial subculture, indicating that each element is active and contributes to genetic variation that may be subject to selection. Following hydrogen peroxide exposure, rapid changes in gene expression were observed in genes related to iron homeostasis. The IS insertions adjacent to katG resulted in more than 20-fold overexpression of the gene and increased hydrogen peroxide tolerance.IMPORTANCE Insertion sequences (IS) contribute to genomic and phenotypic variation in many bacterial species, but little is known about how transposition rates vary among elements or how selective pressure influences this process. A new method for identifying new insertion locations that arise under experimental growth conditions in the genome, termed IS-seq, was developed and tested with cells grown in the presence of hydrogen peroxide, which causes oxidative stress. Gene expression changes in response to hydrogen peroxide exposure are similar to those observed in other species and include genes that control free iron concentrations. New IS insertions adjacent to a gene encoding a catalase enzyme confirm that IS elements can rapidly contribute to adaptive variation in the presence of selection.


Asunto(s)
Acinetobacter baumannii/genética , Elementos Transponibles de ADN , Mutagénesis Insercional , Estrés Oxidativo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Peróxido de Hidrógeno/farmacología , Secuencias Repetitivas Esparcidas , Hierro/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-28461314

RESUMEN

Among Gram-negative bacteria, carbapenem-resistant infections pose a serious and life-threatening challenge. Here, the CRACKLE network reports a sentinel detection and characterization of a carbapenem-resistant Klebsiella pneumoniae ST147 isolate harboring blaNDM-5 and blaOXA-181 from a young man who underwent abdominal surgery in India. blaNDM-5 was located on an IncFII plasmid of ≈90 kb, whereas blaOXA-181 was chromosomally encoded. Resistome and genome analysis demonstrated multiple copies of the transposable element IS26 and a "hot-spot region" in the IncFII plasmid.


Asunto(s)
Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Humanos , India , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Masculino , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-28893775

RESUMEN

Carbapenem antibiotics are among the mainstays for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States, where carbapenem-resistant A. baumannii remains relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from five health care facilities in the state of Oregon. All isolates were defined as extensively drug resistant. Multilocus sequence typing revealed that the isolates belonged to sequence type 2 (international clone 2 [IC2]) and were >95% similar as determined by repetitive-sequence-based PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole-genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried on a 15,198-bp plasmid designated pORAB01-3 and was present in all 16 isolates. The plasmid also contained genes encoding a TonB-dependent receptor, septicolysin, a type IV secretory pathway (VirD4 component, TraG/TraD family) ATPase, an integrase, a RepB family plasmid DNA replication initiator protein, an alpha/beta hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak in the northwestern United States associated with this carbapenemase. Particularly worrisome is that blaOXA-237 was carried on a plasmid and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Carbapenémicos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , Infección Hospitalaria/epidemiología , ADN Bacteriano/genética , Brotes de Enfermedades , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos/genética , Reacción en Cadena de la Polimerasa
7.
Antimicrob Agents Chemother ; 60(7): 4346-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27067339

RESUMEN

We report complete genome sequences of four blaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. The blaNDM-1 genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumannii and Acinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid in E. coli contained a novel complex transposon (Tn125 and Tn5393 with three copies of blaNDM-1) and a recombination "hot spot" for the acquisition of new resistance determinants.


Asunto(s)
Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Epidemiología Molecular/métodos , Acinetobacter/efectos de los fármacos , Acinetobacter/enzimología , Acinetobacter/genética , Acinetobacter baumannii/efectos de los fármacos , Colombia , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos/genética
8.
J Infect Dis ; 211(8): 1296-305, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378635

RESUMEN

BACKGROUND: Acinetobacter baumannii is one of the most antibiotic-resistant pathogens. Defining mechanisms driving pathogenesis is critical to enable new therapeutic approaches. METHODS: We studied virulence differences across a diverse panel of A. baumannii clinical isolates during murine bacteremia to elucidate host-microbe interactions that drive outcome. RESULTS: We identified hypervirulent strains that were lethal at low intravenous inocula and achieved very high early, and persistent, blood bacterial densities. Virulent strains were nonlethal at low inocula but lethal at 2.5-fold higher inocula. Finally, relatively avirulent (hypovirulent) strains were nonlethal at 20-fold higher inocula and were efficiently cleared by early time points. In vivo virulence correlated with in vitro resistance to complement and macrophage uptake. Depletion of complement, macrophages, and neutrophils each independently increased bacterial density of the hypovirulent strain but insufficiently to change lethality. However, disruption of all 3 effector mechanisms enabled early bacterial densities similar to hypervirulent strains, rendering infection 100% fatal. CONCLUSIONS: The lethality of A. baumannii strains depends on distinct stages. Strains resistant to early innate effectors are able to establish very high early bacterial blood density, and subsequent sustained bacteremia leads to Toll-like receptor 4-mediated hyperinflammation and lethality. These results have important implications for translational efforts to develop therapies that modulate host-microbe interactions.


Asunto(s)
Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/inmunología , Bacteriemia/inmunología , Inmunidad Innata/inmunología , Interacciones Microbianas/inmunología , Infecciones por Acinetobacter/microbiología , Animales , Antibacterianos/inmunología , Bacteriemia/microbiología , Farmacorresistencia Bacteriana Múltiple/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C3H , Neutrófilos/inmunología , Neutrófilos/microbiología , Virulencia/inmunología , Factores de Virulencia/inmunología
9.
Antimicrob Agents Chemother ; 59(1): 536-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385117

RESUMEN

The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae has resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Col(r)) is increasingly reported from clinical settings. The genetic mechanisms that lead to Col(r) in K. pneumoniae are not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Col(r) clinical isolates. Col(r) was related to mutations in three different genes in K. pneumoniae strains, with distinct impacts on gene expression. Upregulation of the pmrH operon encoding 4-amino-4-deoxy-L-arabinose (Ara4N) modification of lipid A was found in all Col(r) strains. Alteration of the mgrB gene was observed in six strains. One strain had a mutation in phoQ. Common among these seven strains was elevated expression of phoPQ and unaltered expression of pmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designated crrAB. In these strains, expression of pmrCAB, crrAB, and an adjacent glycosyltransferase gene, but not that of phoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. The crrAB genes are present in most K. pneumoniae genomes, but not in Escherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because the crrAB genes are present in only some strains, Col(r) mechanisms may be dependent on the genetic background.


Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano , Humanos , Klebsiella pneumoniae/aislamiento & purificación , Lípido A/genética , Lípido A/metabolismo , Mutación , Operón
10.
Antimicrob Agents Chemother ; 58(8): 4961-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913165

RESUMEN

Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time.


Asunto(s)
Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Plásmidos/química , Polisacáridos Bacterianos/química , Resistencia betalactámica/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana , Carbapenémicos/farmacología , Hospitales , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Medio Oeste de Estados Unidos/epidemiología , Filogenia , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Polisacáridos Bacterianos/metabolismo
11.
Clin Case Rep ; 11(8): e7753, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529132

RESUMEN

We report two, genotypically identical but phenotypically distinct cases of Schaaf-Yang syndrome and propose the early use of Genome Sequencing in patients with nonspecific presentations to facilitate the early diagnosis of children with rare genetic diseases and improve overall health care outcomes.

12.
JAMA Netw Open ; 6(2): e2254069, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757698

RESUMEN

Importance: Understanding the causes of infant mortality shapes public health, surveillance, and research investments. However, the association of single-locus (mendelian) genetic diseases with infant mortality is poorly understood. Objective: To determine the association of genetic diseases with infant mortality. Design, Setting, and Participants: This cohort study was conducted at a large pediatric hospital system in San Diego County (California) and included 546 infants (112 infant deaths [20.5%] and 434 infants [79.5%] with acute illness who survived; age, 0 to 1 year) who underwent diagnostic whole-genome sequencing (WGS) between January 2015 and December 2020. Data analysis was conducted between 2015 and 2022. Exposure: Infants underwent WGS either premortem or postmortem with semiautomated phenotyping and diagnostic interpretation. Main Outcomes and Measures: Proportion of infant deaths associated with single-locus genetic diseases. Results: Among 112 infant deaths (54 girls [48.2%]; 8 [7.1%] African American or Black, 1 [0.9%] American Indian or Alaska Native, 8 [7.1%] Asian, 48 [42.9%] Hispanic, 1 [0.9%] Native Hawaiian or Pacific Islander, and 34 [30.4%] White infants) in San Diego County between 2015 and 2020, single-locus genetic diseases were the most common identifiable cause of infant mortality, with 47 genetic diseases identified in 46 infants (41%). Thirty-nine (83%) of these diseases had been previously reported to be associated with childhood mortality. Twenty-eight death certificates (62%) for 45 of the 46 infants did not mention a genetic etiology. Treatments that can improve outcomes were available for 14 (30%) of the genetic diseases. In 5 of 7 infants in whom genetic diseases were identified postmortem, death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission. Conclusions and Relevance: In this cohort study of 112 infant deaths, the association of genetic diseases with infant mortality was higher than previously recognized. Strategies to increase neonatal diagnosis of genetic diseases and immediately implement treatment may decrease infant mortality. Additional study is required to explore the generalizability of these findings and measure reduction in infant mortality.


Asunto(s)
Mortalidad Infantil , Secuenciación Completa del Genoma , Niño , Femenino , Humanos , Lactante , Recién Nacido , Causalidad , Estudios de Cohortes , Muerte del Lactante , Masculino , California/epidemiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-36307211

RESUMEN

We provide the first study of two siblings with a novel autosomal recessive LRP1-related syndrome identified by rapid genome sequencing and overlapping multiple genetic models. The patients presented with respiratory distress, congenital heart defects, hypotonia, dysmorphology, and unique findings, including corneal clouding and ascites. Both siblings had compound heterozygous damaging variants, c.11420G > C (p.Cys3807Ser) and c.12407T > G (p.Val4136Gly) in LRP1, in which segregation analysis helped dismiss additional variants of interest. LRP1 analysis using multiple human/mouse data sets reveals a correlation to patient phenotypes of Peters plus syndrome with additional severe cardiomyopathy and blood vessel development complications linked to neural crest cells.


Asunto(s)
Labio Leporino , Conducto Arterioso Permeable , Cardiopatías Congénitas , Deformidades Congénitas de las Extremidades , Animales , Humanos , Ratones , Labio Leporino/complicaciones , Enfermedades de la Córnea/metabolismo , Conducto Arterioso Permeable/complicaciones , Conducto Arterioso Permeable/genética , Deformidades Congénitas de las Extremidades/complicaciones , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Síndrome , Enfermedades Óseas/complicaciones , Enfermedades Óseas/genética , Enfermedades Óseas/metabolismo , Enfermedades Pulmonares/complicaciones , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo
14.
Nat Commun ; 13(1): 4057, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882841

RESUMEN

While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Niño , Humanos , Lactante , Estudios Retrospectivos , Secuenciación Completa del Genoma
15.
Pediatrics ; 148(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34193621

RESUMEN

Congenital anomalies affect 3% to 5% of births and remain the leading cause of infant death in the United States. As whole exome and genome sequencing are increasingly used to diagnose underlying genetic disease, the patient's clinical presentation remains the most important context for interpreting sequencing results, including frequently reported variants of uncertain significance (VUS). Classification of a variant as VUS acknowledges limits on evidence to establish whether a variant can be classified as pathogenic or benign according to the American College of Medical Genetics guidelines. Importantly, the VUS designation reflects limits on the breadth of evidence linking the genetic variant to a disease. However, available evidence, although limited, may be surprisingly relevant in an individual patient's case. Accordingly, a VUS result should be approached neither as nondiagnostic genetic result nor as automatically "uncertain" in its potential to guide clinical decision-making. In this article, we discuss a case of an infant born at 29 weeks 4 days without a corpus callosum, whose whole genome sequencing yielded compound heterozygous variants both classified as VUS in ROBO1, a gene encoding for a receptor involved in a canonical signaling mechanism that guides axons across midline. Approaching the VUS result as potentially pathogenic, we found the infant ultimately had pituitary dysfunction and renal anomalies consistent with other reported ROBO1 variants and basic science literature. Accordingly, we highlight resources for variant interpretation available to clinicians to evaluate VUS results, particularly as they inform the diagnosis of individually rare but collectively common rare diseases.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Insuficiencia Suprarrenal/genética , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Toma de Decisiones Clínicas , Heterocigoto , Humanos , Hipopituitarismo/genética , Recién Nacido , Recien Nacido Prematuro , Enfermedades Renales Quísticas/genética , Imagen por Resonancia Magnética , Masculino , Ultrasonografía , Incertidumbre , Secuenciación Completa del Genoma , Proteínas Roundabout
16.
Genome Med ; 13(1): 63, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874999

RESUMEN

BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.


Asunto(s)
Predisposición Genética a la Enfermedad , Ribonucleoproteínas Nucleares Heterogéneas/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Encéfalo/metabolismo , Variaciones en el Número de Copia de ADN/genética , Regulación de la Expresión Génica , Estudios de Asociación Genética , Variación Genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Patrón de Herencia/genética , Mutación Missense/genética , Fenotipo , Procesamiento Postranscripcional del ARN/genética , Análisis de la Célula Individual
17.
Mol Syndromol ; 11(5-6): 320-329, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33510604

RESUMEN

The generalized form of UDP-galactose-4'-epimerase (GALE) deficiency causes hypotonia, failure to thrive, cataracts, and liver failure. Individuals with non-generalized forms may remain asymptomatic with uncertain long-term outcomes. We report a 2-year-old child compound heterozygous for GALE p.R51W/p.G237D who never developed symptoms of classic galactosemia but has a history of congenital combined mitral and tricuspid valve malformation and pyloric stenosis, and presented with pancytopenia. Variant pathogenicity was supported by predictive computational tools and decreased GALE activity measured in erythrocytes. GALE function extends to the biosynthesis of glycans by epimerization of UDP-N-acetyl-galactosamine and -glucosamine. Interrogation of the Gene Ontology consortium database revealed several putative proteins involved in normal hematopoiesis and atrioventricular valve morphogenesis, requiring N-glycosylation for adequate functionality. We hypothesize that by limiting substrate supply due to GALE deficiency, alterations in N-linked protein glycosylation can explain the patient's phenotype.

18.
Ecotoxicol Environ Saf ; 72(5): 1384-91, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19272648

RESUMEN

Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have elevated trace element concentrations in their tissues, but this relationship and its potential consequences are unclear for lotic organisms. To explore these patterns in a lotic environment, we transplanted Corbicula fluminea from a reference stream to a stream receiving CFPP discharge. We assessed trace element accumulation and glutathione concentration in clam tissue, shell growth, and condition index at five sites along a contamination gradient. Clams at the most upstream and contaminated site had the highest growth rate, condition index, glutathione concentrations, and concentrations of arsenic (7.85+/-0.25 microg/g [dry mass]), selenium (17.75+/-0.80 microg/g), and cadmium (7.28+/-0.34 microg/g). Mercury concentrations declined from 4.33+/-0.83 to 0.81+/-0.11 microg/g [dry mass] in clams transplanted into the selenium-rich environment nearest the power plant, but this effect was not as evident at less impacted, downstream sites. Even though dilution of trace elements within modest distances from the power plant reduced bioaccumulation potential in clams, long-term loading of trace elements to downstream depositional regions (e.g., slow moving, silty areas) is likely significant.


Asunto(s)
Carbón Mineral , Corbicula/efectos de los fármacos , Centrales Eléctricas , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Arsénico/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Corbicula/crecimiento & desarrollo , Corbicula/metabolismo , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/metabolismo , Agua Dulce/análisis , Sedimentos Geológicos/análisis , Glutatión/metabolismo , Concentración de Iones de Hidrógeno , Residuos Industriales , Mercurio/metabolismo , Níquel/metabolismo , Oxígeno/análisis , Selenio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Temperatura , Factores de Tiempo , Contaminantes Químicos del Agua/metabolismo , Zinc/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-31196892

RESUMEN

Neonatal diabetes mellitus (NDM) is a rare condition that presents with diabetes in the first few months of life. The treatment of NDM may differ depending on the genetic etiology, with numerous studies showing the benefit of sulfonylurea therapy in cases caused by mutations in KCNJ11 or ABCC8 Mutations in the insulin gene (INS) have also been identified as causes of NDM; these cases are generally best treated with insulin alone. We report a case of a female infant born small for gestational age (SGA) at late preterm diagnosed with NDM at 7 wk of life who was found by rapid whole-genome sequencing to harbor a novel de novo c.26C>G (p.Pro9Arg) variant in the INS gene. She presented with diabetic ketoacidosis, which responded to insulin therapy. She did not respond to empiric trial of sulfonylurea therapy early in her hospital course, and it was discontinued once a genetic diagnosis was made. Early genetic evaluation in patients presenting with NDM is essential to optimize therapeutic decision-making.


Asunto(s)
Diabetes Mellitus/genética , Enfermedades del Recién Nacido/genética , Insulina/genética , Cetoacidosis Diabética/genética , Femenino , Humanos , Recién Nacido , Mutación
20.
mBio ; 10(2)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914511

RESUMEN

The population structure of health care-associated pathogens reflects patterns of diversification, selection, and dispersal over time. Empirical data detailing the long-term population dynamics of nosocomial pathogens provide information about how pathogens adapt in the face of exposure to diverse antimicrobial agents and other host and environmental pressures and can inform infection control priorities. Extensive sequencing of clinical isolates from one hospital spanning a decade and a second hospital in the Cleveland, OH, metropolitan area over a 3-year time period provided high-resolution genomic analysis of the Acinetobacter baumannii metapopulation. Genomic analysis demonstrated an almost complete replacement of the predominant strain groups with a new, genetically distinct strain group during the study period. The new group, termed clade F, differs from other global clone 2 (GC2) strains of A. baumannii in several ways, including its antibiotic resistance and lipooligosaccharide biosynthesis genes. Clade F strains are part of a large phylogenetic group with broad geographic representation. Phylogenetic analysis of single-nucleotide variants in core genome regions showed that although the Cleveland strains are phylogenetically distinct from those isolated from other locations, extensive intermixing of strains from the two hospital systems was apparent, suggesting either substantial exchange of strains or a shared, but geographically restricted, external pool from which infectious isolates were drawn. These findings document the rapid evolution of A. baumannii strains in two hospitals, with replacement of the predominant clade by a new clade with altered lipooligosaccharide loci and resistance gene repertoires.IMPORTANCE Multidrug-resistant (MDR) A. baumannii is a difficult-to-treat health care-associated pathogen. Knowing the resistance genes present in isolates causing infection aids in empirical treatment selection. Furthermore, knowledge of the genetic background can assist in tracking patterns of transmission to limit the spread of infections in hospitals. The appearance of a new genetic background in A. baumannii strains with a different set of resistance genes and cell surface structures suggests that strong selective pressures exist, even in highly MDR pathogens. Because the new strains have levels of antimicrobial resistance similar to those of the strains that were displaced, we hypothesize that other features, including host colonization and infection, may confer additional selective advantages and contribute to their increased prevalence.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/aislamiento & purificación , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana , Lipopolisacáridos/metabolismo , Microbiota , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/transmisión , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/patogenicidad , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Transmisión de Enfermedad Infecciosa , Variación Genética , Genotipo , Hospitales , Epidemiología Molecular , Ohio/epidemiología , Filogenia , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA