Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 19(12): 1906-13, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18708290

RESUMEN

At low pH in solutions of 50% methanol, proteins form expanded denatured states (the "H" state). In 90% methanol, proteins form expanded helical denatured states with artificial alpha-helices (the "H(c)" state). Gas-phase ions of ubiquitin, cytochrome c, apomyoglobin, and native and disulfide-reduced beta-lactoglobulin were formed by electrospray ionization (ESI) of the proteins from the H and H(c) states in solution. Both states in solution produce the same charge states in ESI. The conformations of the ions were studied with cross section measurements and gas-phase H/D exchange experiments. The cross sections show that the ions retain considerable folded structure. For a given protein and given charge state, ions produced from the H and H(c) states showed the same cross sections (within approximately 1%). Ions of cytochrome c, apomyoglobin, and native and reduced beta-lactoglobulin of a given charge state showed no differences in H/D exchange level when produced from the H or H(c) state. However, ubiquitin ions produced from the H(c) state consistently exchange fewer ( approximately 13%) hydrogens than ions produced from the H state, suggesting that in this case the gas-phase protein ions retain some memory of their solution conformations.


Asunto(s)
Apoproteínas/química , Citocromos c/química , Lactoglobulinas/química , Mioglobina/química , Ubiquitina/química , Animales , Bovinos , Deuterio , Gases , Caballos , Hidrógeno , Concentración de Iones de Hidrógeno , Iones , Conformación Proteica , Desnaturalización Proteica , Soluciones , Espectrometría de Masa por Ionización de Electrospray
2.
J Am Soc Mass Spectrom ; 20(3): 484-95, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19101164

RESUMEN

The conformations of gas-phase ions of hemoglobin, and its dimer and monomer subunits have been studied with H/D exchange and cross section measurements. During the H/D exchange measurements, tetramers undergo slow dissociation to dimers, and dimers to monomers, but this did not prevent drawing conclusions about the relative exchange levels of monomers, dimers, and tetramers. Assembly of the monomers into tetramers, hexamers, and octamers causes the monomers to exchange a greater fraction of their hydrogens. Dimer ions, however, exchange a lower fraction of their hydrogens than monomers or tetramers. Solvation of tetramers affects the exchange kinetics. Solvation molecules do not appear to exchange, and solvation lowers the overall exchange level of the tetramers. Cross section measurements show that monomer ions in low charge states, and tetramer ions have compact structures, comparable in size to the native conformations in solution. Dimers have remarkably compact structures, considerably smaller than the native conformation in solution and smaller than might be expected from the monomer or tetramer cross sections. This is consistent with the relatively low level of exchange of the dimers.


Asunto(s)
Hemoglobinas/química , Espectrometría de Masas/métodos , Multimerización de Proteína , Animales , Bovinos , Hidrógeno/química , Agua/química
3.
J Org Chem ; 70(7): 2763-70, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15787570

RESUMEN

[reaction: see text] Photolysis of 3 in argon-saturated 2-propanol led to formation of 5 via intermolecular H-atom abstraction followed by lactonization. Irradiation of 4 in 2-propanol gave compounds 6 and 7 that also come from intermolecular H-atom abstraction. In contrast, photolysis of an oxygen-saturated solution of 3 in 2-propanol yields products 8, 9, and 10, which were all formed from intramolecular H-atom abstraction and trapping of the corresponding biradical with oxygen. Laser flash photolysis of 3 in methanol showed formation of biradical 3BR (lambda(max) 330 nm, and tau = 50 ns) via intramolecular H-atom abstraction as the main photoreactivity of 3. Biradical 3BR decayed into photoenols 3Z and 3E (lambda(max) 390 nm, tau = 6.5 micros and tau = 162 micros, respectively). In comparison, laser flash photolysis of 4 yielded photoenols 4Z and 4E (lambda(max) 390 nm, tau = 15 micros and tau = 3.6 ms, respectively). Thus photoenol 3E is unusually short-lived, and therefore it does not undergo the intramolecular lactonization as we have observed for the analogous photoenol 1E. Photoenol 3Z decays back to 3 via an intramolecular 1,5-H shift, whereas photoenol 3E reforms 3 efficiently via the solvent with the aid of the ortho ester group. The intramolecular lactonization of photoenols 1E and 3E must be a slow process, presumably because the photoenols are rigid and the hydroxyl group is inhibited, by intramolecular hydrogen bonding, from acquiring the correct geometry for lactonization. Thus only photoenols that are resistant to reformation of their ketone via the solvent are long-lived enough to undergo lactonization and release the alcohol moiety.

4.
J Am Chem Soc ; 125(28): 8655-65, 2003 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-12848573

RESUMEN

The detection and characterization of radicals in biomolecules are challenging due to their high reactivity and low concentration. Mass spectrometry (MS) provides a tool for the unambiguous identification of protein-based radicals by exploiting their reactivity with suitable reagents. To date, protein-radical detection by MS has been modeled after electron paramagnetic resonance experiments, in which diamagnetic spin traps, such as 3,5-dibromo-4-nitrosobenzene sulfonic acid, convert unstable radicals to more stable spin adducts. Since MS detects mass changes, and not unpaired spins, conversion of radicals to stable diamagnetic adducts is more desirable. The use of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO(*)) in the MS identification of protein-based radicals was explored here to establish whether scavenging via radical combination would give rise to TEMPO adducts that were stable to MS analysis. The horseradish peroxidase/H(2)O(2) reaction was used to generate radicals in derivatives of tyrosine, tryptophan, and phenylalanine as models of protein-based radicals. TEMPO(*) was added as a radical scavenger, and the products were analyzed by electrospray ionization (ESI) MS. Dramatically higher mass-adduct yields were obtained using radical scavenging vs radical trapping, which greatly enhanced the sensitivity of radical detection. The efficiency of TEMPO(*) in protein radical scavenging was examined in horse heart myoglobin and cytochrome c peroxidase (CCP) from Saccharomyces cerevisiae. On H(2)O(2) binding to their ferric hemes, two oxidizing equivalents are transferred to the proteins as an Fe(IV)=O species and a polypeptide-based radical. In addition, CCP has been shown to reduce up to 10 equiv of H(2)O(2) using endogenous donors, thereby generating as many as 20 radicals on its polypeptide. Following myoglobin and CCP incubation with a 10-fold molar excess of H(2)O(2) and TEMPO(*), matrix-assisted laser desorption ionization (MALDI) time-of-flight analysis of the tryptic peptides derived from the proteins revealed 1 and 9 TEMPO adducts of myoglobin and CCP, respectively. Given the high scavenging efficiency of TEMPO(*) and the stability of TEMPO-labeled peptides in ESI and MALDI sources, scavenging by stable nitroxide radicals coupled with MS analysis should provide sensitive and powerful technology for the characterization of protein-based radicals.


Asunto(s)
Óxidos N-Cíclicos/química , Citocromo-c Peroxidasa/química , Depuradores de Radicales Libres/química , Mioglobina/química , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Citocromo-c Peroxidasa/metabolismo , Radicales Libres/química , Hemo/química , Hemo/metabolismo , Caballos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Mioglobina/metabolismo , Oxidación-Reducción , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Detección de Spin/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA