Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 77(19): 6867-77, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821766

RESUMEN

Little is known about how genetic variation at the nucleotide level contributes to competitive fitness within species. During a 6,000-generation study of Bacillus subtilis evolved under relaxed selection for sporulation, a new strain, designated WN716, emerged with significantly different colony and cell morphologies; loss of sporulation, competence, acetoin production, and motility; multiple auxotrophies; and increased competitive fitness (H. Maughan and W. L. Nicholson, Appl. Environ. Microbiol. 77:4105-4118, 2011). The genome of WN716 was analyzed by OpGen optical mapping, whole-genome 454 pyrosequencing, and the CLC Genomics Workbench. No large chromosomal rearrangements were found; however, 34 single-nucleotide polymorphisms (SNPs) and +1 frameshifts were identified in WN716 that resulted in amino acid changes in coding sequences of annotated genes, and 11 SNPs were located in intergenic regions. Several classes of genes were affected, including biosynthetic pathways, sporulation, competence, and DNA repair. In several cases, attempts were made to link observed phenotypes of WN716 with the discovered mutations, with various degrees of success. For example, a +1 frameshift was identified at codon 13 of sigW, the product of which (SigW) controls a regulon of genes involved in resistance to bacteriocins and membrane-damaging antibiotics. Consistent with this finding, WN716 exhibited sensitivity to fosfomycin and to a bacteriocin produced by B. subtilis subsp. spizizenii and exhibited downregulation of SigW-dependent genes on a transcriptional microarray, consistent with WN716 carrying a knockout of sigW. The results suggest that propagation of B. subtilis for less than 2,000 generations in a nutrient-rich environment where sporulation is suppressed led to rapid initiation of genomic erosion.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/aislamiento & purificación , Análisis Mutacional de ADN , Mutación , Selección Genética , Esporas Bacterianas/crecimiento & desarrollo , Acetoína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Competencia de la Transformación por ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Genotipo , Locomoción , Fenotipo , Análisis de Secuencia de ADN , Esporas Bacterianas/genética , Esporas Bacterianas/fisiología
2.
Biomaterials ; 33(29): 7064-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22809641

RESUMEN

Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness.


Asunto(s)
Neoplasias/metabolismo , Polietilenglicoles/química , Andamios del Tejido/química , Biofisica/métodos , Mama/citología , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Reactivos de Enlaces Cruzados/farmacología , Elasticidad , Células Epiteliales/citología , Diseño de Equipo , Femenino , Humanos , Microscopía Electrónica de Rastreo/métodos , Metástasis de la Neoplasia , Polímeros/química , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA