Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.545
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571432

RESUMEN

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal , Regulación Alostérica , Sitio Alostérico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Catecoles/metabolismo , Microscopía por Crioelectrón , Fenoldopam/química , Fenoldopam/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Multimerización de Proteína , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestructura , Receptores de Dopamina D2/metabolismo , Homología Estructural de Proteína
2.
Nat Immunol ; 23(7): 1031-1041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761082

RESUMEN

The immune checkpoint receptor lymphocyte activation gene 3 protein (LAG3) inhibits T cell function upon binding to major histocompatibility complex class II (MHC class II) or fibrinogen-like protein 1 (FGL1). Despite the emergence of LAG3 as a target for next-generation immunotherapies, we have little information describing the molecular structure of the LAG3 protein or how it engages cellular ligands. Here we determined the structures of human and murine LAG3 ectodomains, revealing a dimeric assembly mediated by Ig domain 2. Epitope mapping indicates that a potent LAG3 antagonist antibody blocks interactions with MHC class II and FGL1 by binding to a flexible 'loop 2' region in LAG3 domain 1. We also defined the LAG3-FGL1 interface by mapping mutations onto structures of LAG3 and FGL1 and established that FGL1 cross-linking induces the formation of higher-order LAG3 oligomers. These insights can guide LAG3-based drug development and implicate ligand-mediated LAG3 clustering as a mechanism for disrupting T cell activation.


Asunto(s)
Antígenos CD/metabolismo , Activación de Linfocitos , Animales , Anticuerpos , Fibrinógeno , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inmunoterapia , Ligandos , Ratones , Receptores Inmunológicos , Proteína del Gen 3 de Activación de Linfocitos
3.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474922

RESUMEN

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/fisiología , Ebolavirus/ultraestructura , Nucleocápside/ultraestructura , Nucleoproteínas/ultraestructura , Ensamble de Virus , Modelos Biológicos , Proteínas Mutantes/química , Mutación/genética , Nucleoproteínas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo
4.
Cell ; 164(5): 859-71, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898329

RESUMEN

Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.


Asunto(s)
Desarrollo Infantil , Desnutrición/dietoterapia , Leche Humana/química , Leche/química , Oligosacáridos/metabolismo , Animales , Bacteroides fragilis/genética , Bifidobacterium/clasificación , Bifidobacterium/genética , Química Encefálica , Modelos Animales de Enfermedad , Escherichia coli/genética , Heces/microbiología , Vida Libre de Gérmenes , Humanos , Lactante , Malaui , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Microbiota
5.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597514

RESUMEN

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Asunto(s)
Colitis , Receptores Acoplados a Proteínas G , Animales , Ratones , Regulación Alostérica , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Inflamación/tratamiento farmacológico , Cuerpos Cetónicos , Niacina/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
6.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
7.
Mol Cell ; 81(15): 3065-3081.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297911

RESUMEN

The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Laminas/genética , Laminas/metabolismo , ARN Polimerasa II/metabolismo , Imagen Individual de Molécula/métodos , Cohesinas
8.
EMBO J ; 42(22): e113383, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37807845

RESUMEN

Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.


Asunto(s)
Neocórtex , Células-Madre Neurales , Animales , Ratones , Diferenciación Celular/fisiología , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología
9.
Nat Methods ; 21(7): 1245-1256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844629

RESUMEN

Microscopy-based spatially resolved omic methods are transforming the life sciences. However, these methods rely on high numerical aperture objectives and cannot resolve crowded molecular targets, limiting the amount of extractable biological information. To overcome these limitations, here we develop Deconwolf, an open-source, user-friendly software for high-performance deconvolution of widefield fluorescence microscopy images, which efficiently runs on laptop computers. Deconwolf enables accurate quantification of crowded diffraction limited fluorescence dots in DNA and RNA fluorescence in situ hybridization images and allows robust detection of individual transcripts in tissue sections imaged with ×20 air objectives. Deconvolution of in situ spatial transcriptomics images with Deconwolf increased the number of transcripts identified more than threefold, while the application of Deconwolf to images obtained by fluorescence in situ sequencing of barcoded Oligopaint probes drastically improved chromosome tracing. Deconwolf greatly facilitates the use of deconvolution in many bioimaging applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Programas Informáticos , Microscopía Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Ratones , Humanos
10.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498709

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , ADN , Apoptosis/genética , Homólogo 1 de la Proteína MutL/genética
11.
Proc Natl Acad Sci U S A ; 121(24): e2321532121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830102

RESUMEN

Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and ß-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.


Asunto(s)
Microscopía por Crioelectrón , Receptor Cannabinoide CB1 , Transducción de Señal , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/química , Animales , Regulación Alostérica/efectos de los fármacos , Ratones , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Células HEK293 , Relación Estructura-Actividad , Dronabinol/farmacología , Dronabinol/química , Dronabinol/análogos & derivados , Cannabis/química , Cannabis/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(30): e2401091121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39024109

RESUMEN

Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition. We experimentally validated this mechanism and leveraged it to design ligands with enhanced or ablated subtype selectivity. One such ligand demonstrated favorable pharmacokinetic properties and significant efficacy in rodent inflammatory analgesic models. More importantly, it is precisely due to the high subtype selectivity obtained based on this mechanism that this ligand does not show addictive properties in animal models. Our findings elucidate the unconventional role of entropy in CB receptor subtype selectivity and suggest a strategy for rational design of ligands to achieve entropy-driven subtype selectivity for many pharmaceutically important GPCRs.


Asunto(s)
Entropía , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Ligandos , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Unión Proteica , Ratones , Microscopía por Crioelectrón , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/química , Sitios de Unión
13.
Nucleic Acids Res ; 52(10): 5676-5697, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38520407

RESUMEN

Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.


Asunto(s)
Cisplatino , Reparación del ADN , Replicación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Resistencia a Antineoplásicos , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , ADN/metabolismo , ADN/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteínas de Unión a Poli-ADP-Ribosa
14.
Proc Natl Acad Sci U S A ; 120(51): e2303075120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38100414

RESUMEN

Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Animales , Humanos , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37733739

RESUMEN

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Asunto(s)
Inhibición Psicológica , Neuralgia , Humanos , Microscopía por Crioelectrón , Unión Competitiva
16.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406091

RESUMEN

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , Terapia de Inmunosupresión , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
17.
Circulation ; 149(19): 1516-1533, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38235590

RESUMEN

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.


Asunto(s)
Inflamación , Canales Iónicos , Infarto del Miocardio , Remodelación Ventricular , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
18.
Bioinformatics ; 40(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38426310

RESUMEN

MOTIVATION: Predicting molecular properties is a pivotal task in various scientific domains, including drug discovery, material science, and computational chemistry. This problem is often hindered by the lack of annotated data and imbalanced class distributions, which pose significant challenges in developing accurate and robust predictive models. RESULTS: This study tackles these issues by employing pretrained molecular models within a few-shot learning framework. A novel dynamic contrastive loss function is utilized to further improve model performance in the situation of class imbalance. The proposed MolFeSCue framework not only facilitates rapid generalization from minimal samples, but also employs a contrastive loss function to extract meaningful molecular representations from imbalanced datasets. Extensive evaluations and comparisons of MolFeSCue and state-of-the-art algorithms have been conducted on multiple benchmark datasets, and the experimental data demonstrate our algorithm's effectiveness in molecular representations and its broad applicability across various pretrained models. Our findings underscore MolFeSCues potential to accelerate advancements in drug discovery. AVAILABILITY AND IMPLEMENTATION: We have made all the source code utilized in this study publicly accessible via GitHub at http://www.healthinformaticslab.org/supp/ or https://github.com/zhangruochi/MolFeSCue. The code (MolFeSCue-v1-00) is also available as the supplementary file of this paper.


Asunto(s)
Algoritmos , Benchmarking , Descubrimiento de Drogas , Modelos Moleculares , Programas Informáticos
19.
Acc Chem Res ; 57(13): 1777-1789, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38872074

RESUMEN

ConspectusSophisticated genetic networks play a pivotal role in orchestrating cellular responses through intricate signaling pathways across diverse environmental conditions. Beyond the inherent complexity of natural cellular signaling networks, the construction of artificial signaling pathways (ASPs) introduces a vast array of possibilities for reshaping cellular responses, enabling programmable control of living organisms. ASPs can be integrated with existing cellular networks and redirect output responses as desired, allowing seamless communication and coordination with other cellular processes, thereby achieving designable transduction within cells. Among diversified ASPs, establishing connections between originally independent endogenous genes is of particular significance in modifying the genetic networks, so that cells can be endowed with new capabilities to sense and deal with abnormal factors related to differentiated gene expression (i.e., solve the issues of the aberrant gene expression induced by either external or internal stimuli). In a typical scenario, the two genes X and Y in the cell are originally expressed independently. After the introduction of an ASP, changes in the expression of gene X may exert a designed impact on gene Y, subsequently inducing the cellular response related to gene Y. If X represents a disease signal and Y serves as a therapeutic module, the introduction of the ASP empowers cells with a new spontaneous defense system to handle potential risks, which holds great potential for both fundamental and translational studies.In this Account, we primarily review our endeavors in the construction of RNA-mediated ASPs between endogenous genes that can respond to differentiated RNA expression. In contrast to other molecules that may be restricted to specific pathways, synthetic RNA circuits can be easily utilized and expanded as a general platform for constructing ASPs with a high degree of programmability and tunability for diversified functionalities through predictable Watson-Crick base pairing. We first provide an overview of recent advancements in RNA-based genetic circuits, encompassing but not limited to utilization of RNA toehold switches, siRNA and CRISPR systems. Despite notable progress, most reported RNA circuits have to contain at least one exogenous RNA X as input or one engineered RNA Y as a target, which is not suitable for establishing endogenous gene connections. While exogenous RNAs can be engineered and controlled as desired, constructing a general and efficient platform for manipulation of naturally occurring RNAs poses a formidable challenge, especially for the mammalian system. With a focus on this goal, we are devoted to developing efficient strategies to manipulate cell responses by establishing RNA-mediated ASPs between endogenous genes, particularly in mammalian cells. Our step-by-step progress in engineering customized cell signaling circuits, from bacterial cells to mammalian cells, from gene expression regulation to phenotype control, and from small RNA to long mRNA of low abundance and more complex secondary structures, is systematically described. Finally, future perspectives and potential applications of these RNA-mediated ASPs between endogenous genes are also discussed.


Asunto(s)
ARN , Transducción de Señal , Humanos , ARN/metabolismo , ARN/genética , Redes Reguladoras de Genes
20.
Immunity ; 45(1): 83-93, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438767

RESUMEN

Regulatory T (Treg) cells are important in maintaining self-tolerance and immune homeostasis. The Treg cell transcription factor Foxp3 works in concert with other co-regulatory molecules, including Eos, to determine the transcriptional signature and characteristic suppressive phenotype of Treg cells. Here, we report that the inflammatory cytokine interleukin-6 (IL-6) actively repressed Eos expression through microRNA-17 (miR-17). miR-17 expression increased in Treg cells in the presence of IL-6, and its expression negatively correlated with that of Eos. Treg cell suppressive activity was diminished upon overexpression of miR-17 in vitro and in vivo, which was mitigated upon co-expression of an Eos mutant lacking miR-17 target sites. Also, RNAi of miR-17 resulted in enhanced suppressive activity. Ectopic expression of miR-17 imparted effector-T-cell-like characteristics to Treg cells via the de-repression of genes encoding effector cytokines. Thus, miR-17 provides a potent layer of Treg cell control through targeting Eos and additional Foxp3 co-regulators.


Asunto(s)
Proteínas Portadoras/metabolismo , Colitis/inmunología , Interleucina-6/metabolismo , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Autotolerancia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA