Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Respir Res ; 25(1): 261, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943142

RESUMEN

AIMS: To detect the expression of autophagy components, p38 MAPK (p38) and phosphorylated forkhead box transcription factor O-1 (pFoxO1) in pulmonary vascular endothelial cells of chronic thromboembolic pulmonary hypertension (CTEPH) rats and to investigate the possible mechanism through which tissue factor (TF) regulates autophagy. METHODS: Pulmonary artery endothelial cells (PAECs) were isolated from CTEPH (CTEPH group) and healthy rats (control group (ctrl group)) which were cocultured with TF at different time points including 12 h, 24 h, 48 h and doses including 0 nM,10 nM, 100 nM, 1µM, 10µM, 100µM and cocultured with TFPI at 48 h including 0 nM, 2.5 nM, 5 nM. The expression of forkhead box transcription factor O-1 (FoxO1), pFoxO1, p38, Beclin-1 and LC3B in PAECs was measured. Coimmunoprecipitation (co-IP) assays were used to detect the interaction between FoxO1 and LC3. RESULTS: The protein expression of p-FoxO1/FoxO1 was significantly lower in the CTEPH groups (cocultured with TF from 0 nM to 100 µM) than in the ctrl group at 12 h, 24 h, and 48 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of p38 in the CTEPH groups treated with 0 nM, 10 nM, 100 nM or 1 µM TF for 48 h significantly increased than ctrl groups (P < 0.05) and was significantly increased in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of Beclin1 at the same concentration (cocultured with TF from 0 nM to 100 µM) was significantly lower in the CTEPH groups than ctrl groups after 24 h and 48 h (P < 0.05) and was significantly decreased in the CTEPH groups (cocultured with TFPI concentration from 2.5 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of LC3-II/LC3-I at the same concentration (cocultured with TF 0 nM, 1 µM, 10 µM, and 100 µM) was significantly lower in the CTEPH than in the ctrl groups after 12 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). There were close interactions between FoxO1 and LC3 in the control and CTEPH groups at different doses and time points. CONCLUSION: The autophagic activity of PAECs from CTEPH rats was disrupted. TF, FoxO1 and p38 MAPK play key roles in the autophagic activity of PAECs. TF may regulate autophagic activity through the p38 MAPK-FoxO1 pathway.


Asunto(s)
Autofagia , Células Endoteliales , Hipertensión Pulmonar , Arteria Pulmonar , Ratas Sprague-Dawley , Tromboplastina , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Autofagia/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Masculino , Células Endoteliales/metabolismo , Células Cultivadas , Tromboplastina/metabolismo , Tromboplastina/biosíntesis , Hipertensión Pulmonar/metabolismo , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patología , Enfermedad Crónica , Transducción de Señal/fisiología , Proteína Forkhead Box O1
2.
J Thromb Thrombolysis ; 52(2): 454-465, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33655472

RESUMEN

ß-catenin and endothelial mesenchymal transformation play an important role in the formation of pulmonary hypertension. To explore the role of ß-catenin in chronic thromboembolic pulmonary hypertension (CTEPH), we first established a rat model of CTEPH by repeated autologous thromboembolization and then treated these rats with a ß-catenin specific inhibitor, XAV939, for two or four weeks. We further examined the expression of ß-catenin, α-SMA and CD31, mean pulmonary artery pressure (mPAP), and histopathology in the pulmonary artery, and analyzed their correlation. In the thrombus group without treatment of the inhibitor, the expression of ß-catenin and α-SMA in pulmonary artery was increased with time; mPAP, the thickness of pulmonary artery wall, and the area/total area of pulmonary artery (WA/TA) were also increased; however, the expression of CD31 was decreased. Interestingly, these symptoms could be improved by treatment with XAV939. In this study, in CTEPH rat model, the expression of ß-catenin signal affects pulmonary vascular remodeling and pulmonary artery pressure, and positively correlated with pulmonary arterial endothelial mesenchymal transformation (EMT), indicating that ß-catenin signal may play an important role in the occurrence and development of CTEPH. The inhibition of ß-catenin signal and the improvement of pulmonary arterial EMT may provide therapeutic ideas for CTEPH.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Arteria Pulmonar , Embolia Pulmonar/complicaciones , Ratas , beta Catenina
3.
Respir Res ; 17(1): 65, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27234007

RESUMEN

BACKGROUND: Few reports have examined tissue factor (TF) and autophagy expression in chronic pulmonary thromboembolic hypertension (CTEPH) animal models. OBJECTIVES: To investigate the role of tissue factor (TF), autophagy and their interactions during chronic thromboembolic pulmonary hypertension (CTEPH) pathogenesis in a rat model. METHODS: Autologous blood clots were repeatedly injected into the left jugular vein of rats with injecting endogenous fibrinolysis inhibitor tranexamic acid (TXA). Mean pulmonary arterial pressure (mPAP), histopathology and TF, Beclin-1 and microtubule-associated protein 1 light chain (LC3) expression levels were detected. RESULTS: The mPAP and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly (P < 0.05). TF mRNA and protein expression levels in the experiment group increased significantly (P < 0.05). Beclin-1 and LC3B mRNA and protein expression levels were lower in the experiment group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.955, P < 0.05). Beclin-1 and LC3B protein expression had a negative correlation with the WA/TA ratio (r = -0.963, P < 0.05, r = -0.965, P < 0.05, respectively). TF protein expression had a negative correlation with both Beclin-1 and LC3B protein expression (r = -0.995, P <0.05, r = -0972, P < 0.05, respectively). CONCLUSIONS: A rat model of CTEPH can be established by repeatedly introducing autologous blood clots into the pulmonary artery with injecting TXA. TF and autophagy may play a key role during CTEPH pathogenesis, especially in vascular remodeling.


Asunto(s)
Autofagia , Hipertensión Pulmonar/fisiopatología , Circulación Pulmonar , Embolia Pulmonar/fisiopatología , Tromboplastina/genética , Remodelación Vascular , Animales , Antifibrinolíticos/farmacología , Presión Arterial , Beclina-1/biosíntesis , Beclina-1/genética , Hipertensión Pulmonar/genética , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Embolia Pulmonar/genética , Ratas , Ratas Sprague-Dawley , Ácido Tranexámico/farmacología
4.
J Thromb Thrombolysis ; 42(1): 38-45, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26667361

RESUMEN

Thrombosis and inflammation are two major factors underlying chronic thromboembolic pulmonary hypertension (CTEPH). Tissue factor (TF), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) may play critical roles in the process of CTEPH thrombosis and pulmonary vascular remodeling. Ten patients with a confirmed diagnosis of CTEPH, 20 patients with acute pulmonary thromboembolism and 15 patients with other types of pulmonary hypertension were enrolled in this study, along with 20 healthy subjects as the control group. The immunoturbidimetric method was used to determine the plasma content of CRP. The plasma levels of TNF-α, MCP-1, and TF antigen were measured by an enzyme-linked immunosorbent assay, and TF activity was measured by the chromogenic substrate method. Percoll density gradient centrifugation was used to separate peripheral blood mononuclear cells from plasma. The level of monocyte TF mRNA was examined by reverse transcriptase-polymerase chain reaction. The correlations between all indices described above were analyzed. In CTEPH patients, the expression of CRP, TNF-α, and MCP-1 was significantly higher than that in controls (P < 0.05). The levels of TF activity, TF antigen, and TF mRNA in monocyte cells were increased in CTEPH patients when compared with control subjects, but only the TF antigen and TF mRNA levels were significantly different (P < 0.05). In CTEPH patients, levels of CRP, MCP-1, and TNF-α significantly correlated with the level of TF antigen in plasma. TF gene expression was increased in patients with CTEPH, suggesting that blood-borne TF mainly comes from mononuclear cells. TF expression significantly correlated with levels of CRP, TNF-α and MCP-1. These factors may play an important role in the development of CTEPH via the inflammation-coagulation-thrombosis cycle.


Asunto(s)
Citocinas/fisiología , Hipertensión Pulmonar/sangre , Embolia Pulmonar/sangre , Tromboplastina/fisiología , Proteína C-Reactiva/análisis , Estudios de Casos y Controles , Quimiocina CCL2/sangre , Enfermedad Crónica , Citocinas/inmunología , Humanos , Monocitos/metabolismo , ARN Mensajero/análisis , Tromboplastina/análisis , Tromboplastina/genética , Factor de Necrosis Tumoral alfa/sangre
5.
J Thromb Thrombolysis ; 42(4): 520-8, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27542118

RESUMEN

Few reports have examined tissue factor (TF) and forkhead box transcription factor O-1 (FoxO1) expression in chronic thromboembolic pulmonary hypertension (CTEPH) animal models. To investigate the role of TF and FoxO1 and their interactions during CTEPH pathogenesis in a rat model. Autologous blood clots were repeatedly injected into the pulmonary arteries through right jugular vein to induce a rat model of CTEPH. Hemodynamic parameters, histopathology, and TF and FoxO1expression levels were detected. The mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly than sham group (P < 0.05). The cardiac output in the 1-, 2-, and 4-week groups decreased significantly (P < 0.05) when compared to sham group. TF mRNA expression levels in the experiment group increased significantly than sham group (P < 0.05). FoxO1 mRNA and protein expression levels were lower in the experiment group than sham group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.45, P = 0.01). TF mRNA expression had a positive correlation with WA/TA ratio (r = 0.374, P = 0.035) and a positive correlation with mPAP (r = 0.48, P= 0.005). FoxO1 mRNA expression had a negative correlation trend with the WA/TA ratio (r = -0.297, P = 0.099) and a negative correlation trend with mPAP (r = -0.34, P = 0.057). TF mRNA expression had a negative correlation with FoxO1 mRNA expression (r = -0.62, P < 0.001). A rat model of CTEPH can be successfully established by the injection of autologous blood clots into the pulmonary artery. TF and FoxO1 may play a key role in vascular remodeling during CTEPH pathogenesis.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión Pulmonar , Proteínas del Tejido Nervioso/biosíntesis , Embolia Pulmonar , Tromboplastina/biosíntesis , Resistencia Vascular , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Masculino , Embolia Pulmonar/metabolismo , Embolia Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley
6.
J Thromb Thrombolysis ; 41(4): 581-91, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26286518

RESUMEN

To investigate the pulmonary angiography and pathology in a canine model with chronic pulmonary thromboembolism (PTE). The cylindrical blood clots were selectively introduced into the left (n = 10) or right (n = 20) lower pulmonary arteries of dogs. Pulmonary arteriography (PA) was performed before or after embolization. The values after embolization and baseline of mean pulmonary arterial pressure, pulmonary vascular resistance, cardiac output had changed. After 1 or 2 weeks' embolization, local PA demonstrated the abrupt cut-off perfusion defects or webs, bands, and abrupt vascular narrowing. 2 weeks after embolization, the pathology showed that the fibrin networks of the thrombi had multiple recanalization channels, and pulmonary artery had the concentric, lamellar (onion-like) intimal hyperplasia, multilayered, irregular arrangements of endothelial cells, and the infiltration of inflammatory cells. After embolectomy-mediated reperfusion, 2 weeks' subgroup showed destroyed and incomplete alveolar structures, and a large number of exudative cells, primarily neutrophils, and exudate. There close concordance between pulmonary angiography and pathology in a canine model with chronic PTE. The LIRI mechanisms after embolectomy-mediated reperfusion involve the destroyed, incomplete alveolar structures, and infiltration of inflammatory cells, primarily neutrophils.


Asunto(s)
Angiografía , Pulmón , Embolia Pulmonar , Daño por Reperfusión , Animales , Presión Sanguínea , Enfermedad Crónica , Modelos Animales de Enfermedad , Perros , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/fisiopatología , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/fisiopatología , Resistencia Vascular
7.
BMC Pulm Med ; 16(1): 166, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27894283

RESUMEN

BACKGROUND: Nowadays, small peripheral pulmonary lesions (PPLs) are frequently detected and the prognosis of lung cancer depends on the early diagnosis. Because of the high fee and requiring specialized training, many advanced techniques are not available in many developing countries and rural districts. METHODS: Three sets of opaque soft copper wires visible under the fluoroscopy (Flu) in the Flu-flexible bronchoscopy (FB) group (n = 24), which determined the three planes of the lesion, were respectively placed firmly on the surface of the chest wall with adhesive tape on the chest wall. The FB tip was advanced into the bronchus toward the crosspoint of the three perpendicular planes under Flu with careful rotation of a C-arm unit. Then the specimen were harvested focusing around the crosspoint for pathologic diagnosis. The rapid on-site evaluation (ROSE) procedure was also performed. The average Flu time during FB procedures were recorded and diagnostic accuracy rates in the Flu-FB group were compared with the other group guided by radial endobronchial ultrasound (R-EBUS) (n = 23). RESULTS: The location of the core point of the lesion, whether it was visible or not under the fluoroscopy could be recognized by three-dimensional localization technique. The accuracy rates of diagnostic yields were 62.5% in the Flu-FB group, and was similar as 65.2% in the R-EBUS group (P > 0.05). However, in the Flu-FB group, there was a decreasing tendency on accurate diagnosis rates of lower lobe (LL) lesions when comparing with non-LL lesions (3/8 = 37.5% vs 12/16 = 75%, P = 0.091) while in the R-EBUS group it was similar (9/12 = 75% vs 6/11 = 54.6%, P = 0.278). In the Flu-FB group, fluoroscopy time was negatively correlated with the lesion length (r = -0.613, P = 0.001), however, there was no significant difference between the lesions invisible or not (5.83 ± 1.45 min vs 7.67 ± 2.02 min, P = 0.116) under the fluoroscopy, as well as no significant difference among SPN, mGGO and GGO (6.12 ± 2.05 min, 7.25 ± 1.33 min and 7.80 ± 2.02 min, P > 0.05). CONCLUSIONS: Small PPL whether it is visible or not under fluoroscopy can be located accurately by our three-dimensional localization technique on chest wall surface and performed bronchoscopy procedures to increase diagnostic yields. It is more convenient, economical and reliable with the similar diagnostic yields than R-EBUS guided method. TRIAL REGISTRATION: Current Controlled Trials ChiCTR-DDD-16009715 . The date of registration: 3rd Nov, 2016. Retrospectively registered.


Asunto(s)
Broncoscopía , Endosonografía , Fluoroscopía/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón/patología , Adulto , Anciano , China , Femenino , Hemorragia/etiología , Humanos , Imagenología Tridimensional , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Neumotórax/etiología , Estudios Retrospectivos , Pared Torácica , Tomografía Computarizada por Rayos X
8.
J Thromb Thrombolysis ; 40(1): 42-53, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25677043

RESUMEN

Lung ischemia-reperfusion injury (LIRI) may occur in the region of the affected lung after reperfusion therapy. The inflammatory response mechanisms related to LIRI in pulmonary thromboembolism (PTE), especially in chronic PTE, need to be studied further. In a PTE model, inflammatory response and apoptosis may occur during LIRI and nitric oxide (NO) inhalation may alleviate the inflammatory response and apoptosis of pneumocytes during LIRI. A PTE canine model was established through blood clot embolism to the right lower lobar pulmonary artery. Two weeks later, we performed embolectomy with reperfusion to examine the LIRI changes among different groups. In particular, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2), serum concentrations of tumor necrosis factor-α (TNF-α), myeloperoxidase concentrations in lung homogenates, alveolar polymorphonuclear neutrophils (PMNs), lobar lung wet to dry ratio (W/D ratio), apoptotic pneumocytes, and lung sample ultrastructure were assessed. The PaO2/FiO2 in the NO inhalation group increased significantly when compared with the reperfusion group 4 and 6 h after reperfusion (368.83 ± 55.29 vs. 287.90 ± 54.84 mmHg, P < 0.05 and 380.63 ± 56.83 vs. 292.83 ± 6 0.34 mmHg, P < 0.05, respectively). In the NO inhalation group, TNF-α concentrations and alveolar PMN infiltration were significantly decreased as compared with those of the reperfusion group, 6 h after reperfusion (7.28 ± 1.49 vs. 8.90 ± 1.43 pg/mL, P < 0.05 and [(19 ± 6)/10 high power field (HPF) vs. (31 ± 11)/10 HPF, P < 0.05, respectively]. The amount of apoptotic pneumocytes in the lower lobar lung was negatively correlated with the arterial blood PaO2/FiO2, presented a positive correlation trend with the W/D ratio of the lower lobar lung, and a positive correlation with alveolar PMN in the reperfusion group and NO inhalation group. NO provided at 20 ppm for 6 h significantly alleviated LIRI in the PTE model. Our data indicate that, during LIRI, an obvious inflammatory response and apoptosis occur in our PTE model and NO inhalation may be useful in treating LIRI by alleviating the inflammatory response and pneumocyte apoptosis. This potential application warrants further investigation.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Apoptosis , Mediadores de Inflamación/sangre , Pulmón/metabolismo , Embolia Pulmonar/sangre , Daño por Reperfusión/sangre , Células Epiteliales Alveolares/patología , Animales , Apoptosis/fisiología , Perros , Pulmón/patología , Embolia Pulmonar/patología , Daño por Reperfusión/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38261500

RESUMEN

Nonlinear projection equations (NPEs) provide a unified framework for addressing various constrained nonlinear optimization and engineering problems. However, when it comes to solving multiple NPEs, traditional numerical integration methods are not efficient enough. This is because traditional methods solve each NPE iteratively and independently. In this article, we propose a novel approach based on multitask learning (MTL) for solving multiple NPEs. The solution procedure is outlined as follows. First, we model each NPE as a system of ordinary differential equations (ODEs) using neurodynamic optimization. Second, for each ODE system, we use a physics-informed neural network (PINN) as the solution. Third, we use a multibranch MTL framework, where each branch corresponds to a PINN model. This allows us to solve multiple NPEs in parallel by training a single neural network model. Experimental results show that our approach has superior computational performance, especially when the number of NPEs to be solved is large.

10.
Int J Ophthalmol ; 17(6): 1120-1127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895673

RESUMEN

AIM: To investigate the association between central serous chorioretinopathy (CSC) and Helicobacter pylori (Hp) by summarizing all available evidence. METHODS: The Scopus, Embase, EBSCO, PubMed, Web of Science, and Cochrane Library databases for all relevant studies published from inception to October 2022 were searched, and manually searched for relevant reference lists as a supplement. Studies investigating the association between CSC and Hp infection were included. Finally, 8 case-control studies were included in the Meta-analysis after study selection. RESULTS: The results showed no significant correlation between Hp infection and CSC [odds ratio (OR) 1.89, 95% confidential interval (CI) 0.58-6.15, I 2=96%, P=0.29]. After subgroup analysis based on the degree of development of the study (developing/developed countries), it was found that the results of the two subgroups were the same as the whole, and no significant difference between the two subgroups existed. Meta-regression showed that the effect of sample size on heterogeneity among studies was more prominent (P<0.01, adjusted R 2=89.72%), which can explain 89.72% of the sources of heterogeneity. CONCLUSION: This Meta-analysis reveals no significant correlation between Hp infection and CSC, which still warrants further well-designed extensive sample studies to reach a more reliable conclusion and promote a better understanding of the treatment of CSC.

11.
Int J Ophthalmol ; 17(1): 188-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239939

RESUMEN

AIM: To summarize the application of deep learning in detecting ophthalmic disease with ultrawide-field fundus images and analyze the advantages, limitations, and possible solutions common to all tasks. METHODS: We searched three academic databases, including PubMed, Web of Science, and Ovid, with the date of August 2022. We matched and screened according to the target keywords and publication year and retrieved a total of 4358 research papers according to the keywords, of which 23 studies were retrieved on applying deep learning in diagnosing ophthalmic disease with ultrawide-field images. RESULTS: Deep learning in ultrawide-field images can detect various ophthalmic diseases and achieve great performance, including diabetic retinopathy, glaucoma, age-related macular degeneration, retinal vein occlusions, retinal detachment, and other peripheral retinal diseases. Compared to fundus images, the ultrawide-field fundus scanning laser ophthalmoscopy enables the capture of the ocular fundus up to 200° in a single exposure, which can observe more areas of the retina. CONCLUSION: The combination of ultrawide-field fundus images and artificial intelligence will achieve great performance in diagnosing multiple ophthalmic diseases in the future.

12.
Eye (Lond) ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068250

RESUMEN

OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) platform in the form of an applet that facilitates the screening and management of strabismus on any mobile device. METHODS: The Visual Transformer (VIT_16_224) was developed using primary gaze photos from two datasets covering different ages. The AI model was evaluated by 5-fold cross-validation set and tested on an independent test set. The diagnostic performance of the AI model was assessed by calculating the Accuracy, Precision, Specificity, Sensitivity, F1-Score and Area Under the Curve (AUC). RESULTS: A total of 6194 photos with corneal light-reflection (with 2938 Exotropia, 1415 Esotropia, 739 Vertical Deviation and 1562 Orthotropy) were included. In the internal validation set, the AI model achieved an Accuracy of 0.980, Precision of 0.941, Specificity of 0.979, Sensitivity of 0.958, F1-Score of 0.951 and AUC of 0.994. In the independent test set, the AI model achieved an Accuracy of 0.967, Precision of 0.980, Specificity of 0.970, Sensitivity of 0.960, F1-Score of 0.975 and AUC of 0.993. CONCLUSIONS: Our study presents an advanced AI model for strabismus screening which integrates electronic archives for comprehensive patient histories. Additionally, it includes a patient-physician interaction module for streamlined communication. This innovative platform offers a complete solution for strabismus care, from screening to long-term follow-up, advancing ophthalmology through AI technology for improved patient outcomes and eye care quality.

13.
Front Immunol ; 15: 1446710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39192976

RESUMEN

Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a serious pulmonary vascular disease characterized by residual thrombi in the pulmonary arteries and distal pulmonary microvascular remodeling. The pathogenesis of CTEPH remains unclear, but many factors such as inflammation, immunity, coagulation and angiogenesis may be involved. Monocytes are important immune cells that can differentiate into macrophages and dendritic cells and play an important role in thrombus formation. However, the distribution, gene expression profile and differentiation trajectory of monocyte subsets in CTEPH patients have not been systematically studied. This study aims to reveal the characteristics and functions of monocytes in CTEPH patients using single-cell sequencing technology, and to provide new insights for the diagnosis and treatment of CTEPH. Methods: Single-cell RNA sequencing (scRNA-seq) were performed to analyze the transcriptomic features of peripheral blood mononuclear cells (PBMCs) from healthy controls, CTEPH patients and the tissues from CTEPH patients after the pulmonary endarterectomy (PEA). We established a CTEPH rat model with chronic pulmonary embolism caused by repeated injection of autologous thrombi through a central venous catheter, and used flow cytometry to detect the proportion changes of monocyte subsets in CTEPH patients and CTEPH rat model. We also observed the infiltration degree of macrophage subsets in thrombus tissue and their differentiation relationship with peripheral blood monocyte subsets by immunofluorescence staining. Results: The results showed that the monocyte subsets in peripheral blood of CTEPH patients changed significantly, especially the proportion of CD16+ monocyte subset increased. This monocyte subset had unique functional features at the transcriptomic level, involving processes such as cell adhesion, T cell activation, coagulation response and platelet activation, which may play an important role in pulmonary artery thrombus formation and pulmonary artery intimal remodeling. In addition, we also found that the macrophage subsets in pulmonary endarterectomy tissue of CTEPH patients showed pro-inflammatory and lipid metabolism reprogramming features, which may be related to the persistence and insolubility of pulmonary artery thrombi and the development of pulmonary hypertension. Finally, we also observed that CD16+ monocyte subset in peripheral blood of CTEPH patients may be recruited to pulmonary artery intimal tissue and differentiate into macrophage subset with high expression of IL-1ß, participating in disease progression. Conclusion: CD16+ monocytes subset had significant gene expression changes in CTEPH patients, related to platelet activation, coagulation response and inflammatory response. And we also found that these cells could migrate to the thrombus and differentiate into macrophages with high expression of IL-1ß involved in CTEPH disease progression. We believe that CD16+ monocytes are important participants in CTEPH and potential therapeutic targets.


Asunto(s)
Hipertensión Pulmonar , Monocitos , Embolia Pulmonar , Receptores de IgG , Análisis de la Célula Individual , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Receptores de IgG/metabolismo , Embolia Pulmonar/inmunología , Embolia Pulmonar/metabolismo , Animales , Masculino , Enfermedad Crónica , Ratas , Femenino , Persona de Mediana Edad , Proteínas Ligadas a GPI/metabolismo , Modelos Animales de Enfermedad , Transcriptoma , Anciano , Arteria Pulmonar/metabolismo , Arteria Pulmonar/inmunología , Arteria Pulmonar/patología
14.
Neural Netw ; 168: 419-430, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804745

RESUMEN

This paper proposes a deep learning approach for solving non-smooth convex optimization problems (NCOPs), which have broad applications in computer science, engineering, and physics. Our approach combines neurodynamic optimization with physics-informed neural networks (PINNs) to provide an efficient and accurate solution. We first use neurodynamic optimization to formulate an initial value problem (IVP) that involves a system of ordinary differential equations for the NCOP. We then introduce a modified PINN as an approximate state solution to the IVP. Finally, we develop a dedicated algorithm to train the model to solve the IVP and minimize the NCOP objective simultaneously. Unlike existing numerical integration methods, a key advantage of our approach is that it does not require the computation of a series of intermediate states to produce a prediction of the NCOP. Our experimental results show that this computational feature results in fewer iterations being required to produce more accurate prediction solutions. Furthermore, our approach is effective in finding feasible solutions that satisfy the NCOP constraint.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Simulación por Computador , Solución de Problemas , Física
15.
Front Pharmacol ; 14: 1227787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767401

RESUMEN

Purpose: To comprehensively reassess the efficacy and safety of different concentrations of atropine for retarding myopia progression and seek the most appropriate therapeutic concentration for clinical practice. Methods: We searched PubMed, Cochrane Library, Embase, Chinese Science and Technology Periodicals (VIP) and China National Knowledege Infrastructure (CNKI) from their inception to 23 March 2023, to obtain eligible randomized controlled trials (RCTs) and cohort studies that had atropine in at least one treatment arm and placebo/no intervention in another arm. We evaluated the risk of bias of the RCTs according to the recommendations of the Cochrane Collaboration for RCTs and quality of cohort studies by the Newcastle‒Ottawa Scale. Weighted mean difference (WMD), 95% confidence interval were calculated for meta-analysis. All data analyses were performed using Review Manager 5.3, STATA 12.0 and SPSS 26.0 software. Results: A total of 44 studies were included in the meta-analysis. Weighted mean difference (WMD) were 0.73 diopters (D), 0.65 D, 0.35 D per year in refraction progression (χ 2 = 14.63, I 2 = 86.3%; p < 0.001) and -0.26 mm, -0.37 mm, -0.11 mm per year in axial length progression (χ 2 = 5.80, I 2 = 65.5%; p = 0.06) for high (0.5%-1%), moderate (0.1%-0.25%), and low (0.005%-0.05%) dose atropine groups, respectively. Logarithmic dose‒response correlations were found between atropine and their effect on change of refraction, axial length, accommodation and photopic pupil diameter. Through these curves, we found that atropine with concentrations ≤0.05% atropine resulted in a residual value of accommodation of more than 5 D and an increase in pupil diameter no more than 3 mm. Higher doses of atropine resulted in a higher incidence of adverse effects, of which the incidence of photophobia was dose-dependent (r = 0.477, p = 0.029). Conclusion: Both the efficacy and risk of adverse events for atropine treatment of myopia were mostly dose dependent. Comprehensively considered the myopia control effect and safety of each dose, 0.05% may be the best concentration of atropine to control myopia progression at present, at which myopia is better controlled and the side effects are tolerable. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, CRD42022377705.

16.
Neural Netw ; 156: 49-57, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242833

RESUMEN

Finding the saddle point of a matrix game is a classical problem that arises in various fields, e.g., economics, computer science, and engineering. The standard problem-solving methods consist of formulating the problem as a linear program (LP). However, this approach seems less efficient when many instances need to be solved. In this paper, we propose a Convolutional Neural Network based approach, which is able to predict both the strategy profile (x,y) and the optimal value v of the game. We call this approach Matrix Game-Conventional Neural Network or MG-CNN for short. Thanks to a global pooling technique, MG-CNN can solve matrix games with different shapes. We propose a specialized algorithm to train MG-CNN, which includes both data generation and model training. Our numerical experiments show that MG-CNN outperforms standard LP solvers in terms of computational CPU time and provides a high-quality prediction.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
17.
Neural Netw ; 152: 140-149, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35525162

RESUMEN

This paper aims at solving a stochastic two-player zero-sum Nash game problem studied in Singh and Lisser (2019). The main contribution of our paper is that we model this game problem as a dynamical neural network (DNN for short). In this paper, we show that the saddle point of this game problem is the equilibrium point of the DNN model, and we study the globally asymptotically stable of the DNN model. In our numerical experiments, we present the time-continuous feature of the DNN model and compare it with the state-of-the-art convex solvers, i.e., Splitting conic solver (SCS for short) and Cvxopt. Our numerical results show that our DNN method has two advantages in dealing with this game problem. Firstly, the DNN model can converge to a better optimal point. Secondly, the DNN method can solve all problems, even when the problem size is large.


Asunto(s)
Redes Neurales de la Computación
18.
J Thorac Dis ; 12(5): 1903-1916, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32642094

RESUMEN

BACKGROUND: Chronic intermittent hypoxia (CIH) involves substantial cortico-hippocampal injury, causing impairments of neurocognitive, respiratory, and cardiovascular functions. Long non-coding RNAs (lncRNAs) participate in CIH functions and development. Therefore, we explored the mechanisms involving lncRNA maternally expressed gene 3 (MEG3) regulating the aortic endothelial function of CIH mice via regulation of microRNA-135a (miR-135a) and the hypoxia-inducible factor (HIF)-1α. METHODS: Expression of MEG3, miR-135a, and HIF-1α in CIH mice and CIH-treated cells was detected. Then, the apoptosis and proliferation of the aortic endothelial cells were examined to verify whether miR-135a and HIF-1α participated in CIH. Next, the interactions between MEG3, miR-135a, and HIF-1α were explored. Later, the effects of MEG3/miR-135a/HIF-1α on the expression of proliferation- and apoptosis-related factors and aortic injury were investigated via gain- and loss-of function studies both in vivo and in vitro. RESULTS: MEG3 and HIF-1α were highly expressed while miR-135a was poorly expressed in CIH mice and CIH-modeled cells. Moreover, miR-135a targeted HIF-1α to promote cell proliferation and inhibit apoptosis. MEG3 regulated HIF-1α expression by competitively binding to miR-135a. More importantly, we found that the silencing of MEG3/HIF-1α and the overexpression of miR-135a inhibited the apoptosis and injury of aortic endothelial cells while promoting cell proliferation in CIH mice. CONCLUSIONS: Altogether, silencing of MEG3 suppressed the aortic endothelial injury and cell apoptosis in CIH mice by downregulating HIF-1α through sponging miR-135a, providing evidence of a potential therapeutic target for CIH.

19.
Ann Transl Med ; 8(7): 492, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32395536

RESUMEN

BACKGROUND: Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening condition arising from the thrombus and obstructive remodeling of the pulmonary arteries, which causes a significant morbidity and mortality. Although the modern treatment in CTEPH has been significant advanced both in surgical and medical treatment, none can claim to cure the disease, largely because of our limited understanding of the underlying pathogenesis of the disease and lack of a reliable CTEPH animal model to study for. Recently, inflammation has been accepted as a common pathway through which various risk factors trigger venous thrombo-embolism (VTE) formation, we describe a novel mouse model of CTEPH which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of CTEPH in humans, to open a new horizons of inflammation in CTEPH. METHODS: By administering a pulmonary embolism (PE) protocol (comprising 3 sequential left jugular vein injections of autologous blood clots) to 8-week-old male Sprague Dawley (SD) rats using tranexamic acid (200 mg/kg.d) to inhibit fibrinolysis and injecting additional carrageenan (20 mg/kg, once a week) to create perivascular inflammation, we successfully generated a CTEPH animal model. By monitoring the mean pulmonary artery pressure (mPAP) and the histopathological change to evaluate the CTEPH model. By detecting the RT-PCR, western blot, TUNEL, and immunohistochemistry in the sub-groups to find the potential mechanism of inflammation may work in the pulmonary vascular remolding. RESULTS: In this study, rats with CTEPH exhibited pronounced pulmonary vascular remolding with higher vessel wall area/total area (WA/TA) ratio in comparison to the control rats (85.41%±7.37% vs. 76.41%±5.97%, P<0.05), the mPAP (25.51±1.13 vs. 15.92±1.13 mmHg, P<0.05). Significant differences in mean pulmonary artery pressure (mPAP) values were observed between rats injected solely with clots and those injected with both clots and carrageenan (25.51±1.13 vs. 29.82±1.26 mmHg, P<0.05, respectively). Furthermore, following the third embolization, thrombi and intimal hyperplasia occurred in the pulmonary artery. In addition, repeated embolization elevated mRNA and protein levels of tumor necrosis factor-α (TNF-α), NF-κB/p65, and B-cell lymphoma-2 (BCL-2), but decreased BAX expression in a time-dependent manner. CONCLUSIONS: Take advantage of the inflammation to trigger VTE formation, we successfully generated a CTEPH animal model. Inflammation may play a crucial role in the pathogenesis and progression of CTEPH by inhibiting endothelial cell apoptosis. Understanding the role of inflammation in CTEPH may not only help to determine the optimal treatment options but also may aid in the development of future preventative strategies, since current anticoagulation treatment regimens are not designed to inhibit inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA