Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281030

RESUMEN

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Asunto(s)
Picea , Humanos , Picea/genética , Picea/metabolismo , Variaciones en el Número de Copia de ADN , beta-Glucosidasa/genética , Genómica , Transcriptoma
2.
Plant J ; 110(4): 978-993, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218100

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.


Asunto(s)
Populus , ARN Largo no Codificante , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Populus/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/fisiología , Estrés Salino/genética
3.
New Phytol ; 234(1): 295-310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997964

RESUMEN

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.


Asunto(s)
Begoniaceae , Begoniaceae/genética , Evolución Molecular , Genoma , Filogenia , Sintenía/genética
4.
Hortic Res ; 8(1): 38, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33642574

RESUMEN

Magnolia biondii Pamp. (Magnoliaceae, magnoliids) is a phylogenetically, economically, and medicinally important ornamental tree species widely grown and cultivated in the north-temperate regions of China. Determining the genome sequence of M. biondii would help resolve the phylogenetic uncertainty of magnoliids and improve the understanding of individual trait evolution within the Magnolia genus. We assembled a chromosome-level reference genome of M. biondii using ~67, ~175, and ~154 Gb of raw DNA sequences generated via Pacific Biosciences single-molecule real-time sequencing, 10X Genomics Chromium, and Hi-C scaffolding strategies, respectively. The final genome assembly was ~2.22 Gb, with a contig N50 value of 269.11 kb and a BUSCO complete gene percentage of 91.90%. Approximately 89.17% of the genome was organized into 19 chromosomes, resulting in a scaffold N50 of 92.86 Mb. The genome contained 47,547 protein-coding genes, accounting for 23.47% of the genome length, whereas 66.48% of the genome length consisted of repetitive elements. We confirmed a WGD event that occurred very close to the time of the split between the Magnoliales and Laurales. Functional enrichment of the Magnolia-specific and expanded gene families highlighted genes involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, and responses to stimuli, which may improve the ecological fitness and biological adaptability of the lineage. Phylogenomic analyses revealed a sister relationship of magnoliids and Chloranthaceae, which are sister to a clade comprising monocots and eudicots. The genome sequence of M. biondii could lead to trait improvement, germplasm conservation, and evolutionary studies on the rapid radiation of early angiosperms.

6.
J Morphol ; 222(2): 175-190, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29865406

RESUMEN

Jaw protrusion is an important component of prey capture in fishes, although the mechanics of protrusion have thus far been studied largely in teleosts. Elasmobranchs are also able to protrude their jaws (Tricas and McCosker [1984] Proc. Cal. Acad. Sci. 43: 221-238; Tricas [1985] Mem. S. Calif. Acad. Sci. 8:81-91.; Frazzetta and Prange [1987] Copeia 4:979-993). Several related features of the feeding apparatus contribute to jaw protrusion in sharks. Labial cartilages form an extendible series attached dorsally to the anterolateral face of the palatoquadrate and ventrally to the anteroventral surface of Meckel's cartilage. The labial cartilage chain swings anterolaterally as the lower jaw is depressed, thrusting the labial margins forward to form a circular oral opening and displacing the jaw apparatus towards the food; this pattern is analogous to halecomorph and primitive actinopterygian fishes in which the maxilla swings forward (Lauder [1979] J. Zool. Lond. 187:543-578). The palatoquadrate and Meckel's cartilage also project anteriorly and represent the major contribution to protrusion. These movements occur simultaneously with enlargement of the oral cavity to generate suction. The wobbegong sharks (Orectolobidae) are specialized for jaw protrusion. The spotted wobbegong protrudes its jaw by 33% of its chondrocranial length using two different mechanical systems. In the first mechanism of jaw protrusion, the intermandibularis and interhyoideus muscles medially compress the lower jaw and hyomandibulae. Compression of the lower jaw results in a more acute symphyseal angle so that the anteroposterior alignment of the lower jaw increases due to the rotation of each lower jaw towards a saggital orientation. Distal compression of the hyomandibulae at their attachments to the jaws swings the jaws forward. The second mechanism involves rotation of the ceratohyal around a posterior process of the lower jaw, pushing the hyomandibulae anteroventrally, thereby pushing the jaw articulation ventrally and anteriorly to protrude the jaws. © 1994 Wiley-Liss, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA