Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(9): 5254-5263, 2024 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-39323144

RESUMEN

This study aimed to investigate the contamination characteristics, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Third Drain of Ningxia. Water samples were collected in November 2021, March 2022, and July 2022, respectively. A total of 16 priority PAHs were quantitatively detected using gas chromatography-mass spectrometry (GC-MS). The results showed that ρ(∑PAHs) in the drain ranged from 324.11 to 530.77 ng·L-1, with an average value of 414.73 ng·L-1. The detection rate of each monomer was greater than 90%, and DaA had the highest concentration, with average values of 48.53 ng·L-1, followed by IcdP. Compared with those in other rivers in China, the PAH concentrations in the Third Drain of Ningxia showed a medium pollution level. The concentration of ∑PAHs and the high ring monomers were significantly higher in summer than that in spring and winter. On a spatial scale, the average concentration of ∑PAHs in the drain decreased in the order of upstream Helan section > midstream Pingluo section > downstream Huinong section. The proportion of PAHs was in the order of high rings (5-6 rings) > low rings (2-3 rings) > middle rings (4 rings), with 5 rings being dominant. Probabilistic matrix factorization (PMF) was used to quantitatively assess the source apportionment of PAHs. The results showed that coal chemical emissions, automobile exhaust emissions, coal combustion, and petrochemical emissions contributed 27.36%, 27.64%, 26.85%, and 18.15%, respectively. Ecological risk assessment showed that BaA, BbF, BghiP DaA, and IcdP had high risk, whereas other monomers exhibited moderate risk. Therefore, control measures should be taken as soon as possible. This study can provide a scientific basis for the prevention and control of PAH pollution in the drains flowing into the Yellow River of Ningxia..

2.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-38471862

RESUMEN

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Asunto(s)
Benzofenonas , Carbanilidas , Cosméticos , Triclosán , Contaminantes Químicos del Agua , Acetaminofén , Organismos Acuáticos , Cafeína/análisis , Ciprofloxacina , Cosméticos/análisis , Monitoreo del Ambiente/métodos , Levofloxacino/análisis , Preparaciones Farmacéuticas , Medición de Riesgo , Ríos/química , Aguas del Alcantarillado/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
Biomed Pharmacother ; 168: 115716, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866000

RESUMEN

In recent years, research on the mechanism of bone destruction in rheumatoid arthritis (RA) has remained in the initial stages, and the mechanism has not been fully elucidated to date. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in RA bone destruction via autophagy, but the specific regulatory mechanism of lncRNA-mediated autophagy is unclear. Therefore, in this article, we review the mechanisms of lncRNA-mediated autophagy in fibroblast-like synoviocytes and chondrocytes in RA bone destruction. We explain that lncRNAs mediate autophagy and participate in many specific pathological processes of RA bone destruction by regulating signalling pathways and the expression of target genes. Specific lncRNAs can be used as markers for molecular diagnosis, mechanistic regulation, treatment and prognosis of RA.


Asunto(s)
Artritis Reumatoide , ARN Largo no Codificante , Sinoviocitos , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Artritis Reumatoide/metabolismo , Sinoviocitos/metabolismo , Transducción de Señal , Fibroblastos/metabolismo , Autofagia/genética , Proliferación Celular/genética , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA