Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(4): 1117-1133.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096019

RESUMEN

Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach, intratumoral TSA-reactive CD4+, CD8+ T cells, and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs, TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype, TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle, FucoID should have the potential of accelerating the pace of personalized cancer treatment.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Comunicación Celular , Fucosa/metabolismo , Linfocitos T/inmunología , Linfocitos T/patología , Adulto , Secuencia de Aminoácidos , Animales , Biomarcadores de Tumor/metabolismo , Biotinilación , Efecto Espectador/inmunología , Linfocitos T CD8-positivos/inmunología , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fucosiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori/enzimología , Humanos , Inmunidad , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Péptidos/química , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Bazo/metabolismo
2.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051099

RESUMEN

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Asunto(s)
Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , ADN/metabolismo , Endonucleasas/metabolismo , Edición Génica/métodos , Genoma , Bibliotecas de Moléculas Pequeñas , Streptococcus pyogenes/genética , Especificidad por Sustrato
3.
Cell ; 175(6): 1607-1619.e15, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500539

RESUMEN

In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Hepatocitos/metabolismo , Esferoides Celulares/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular Transformada , Células Hep G2 , Hepatocitos/trasplante , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hígado/lesiones , Hígado/metabolismo , Ratones Noqueados , Esferoides Celulares/trasplante , Factores de Tiempo
4.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719519

RESUMEN

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Neutrófilos/fisiología , Peritonitis/inmunología , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Homeostasis , Humanos , Ratones , Análisis de Secuencia de ARN
5.
Nature ; 628(8006): 99-103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538794

RESUMEN

Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.

6.
Cell ; 150(1): 39-52, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22748632

RESUMEN

A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Animales , Replicación del ADN , Ratones , Datos de Secuencia Molecular , Alineación de Secuencia , Acortamiento del Telómero
7.
Mol Cell ; 73(5): 1015-1027.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30711376

RESUMEN

TCRs recognize cognate pMHCs to initiate T cell signaling and adaptive immunity. Mechanical force strengthens TCR-pMHC interactions to elicit agonist-specific catch bonds to trigger TCR signaling, but the underlying dynamic structural mechanism is unclear. We combined steered molecular dynamics (SMD) simulation, single-molecule biophysical approaches, and functional assays to collectively demonstrate that mechanical force induces conformational changes in pMHCs to enhance pre-existing contacts and activates new interactions at the TCR-pMHC binding interface to resist bond dissociation under force, resulting in TCR-pMHC catch bonds and T cell activation. Intriguingly, cancer-associated somatic mutations in HLA-A2 that may restrict these conformational changes suppressed TCR-pMHC catch bonds. Structural analysis also indicated that HLA polymorphism might alter the equilibrium of these conformational changes. Our findings not only reveal critical roles of force-induced conformational changes in pMHCs for activating TCR-pMHC catch bonds but also have implications for T cell-based immunotherapy.


Asunto(s)
Inmunidad Adaptativa , Antígeno HLA-A2/inmunología , Mecanotransducción Celular , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Células HEK293 , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Hibridomas , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Imagen Individual de Molécula/métodos , Relación Estructura-Actividad , Linfocitos T/metabolismo
8.
EMBO J ; 41(2): e107739, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34913508

RESUMEN

Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.


Asunto(s)
Subfamilia K de Receptores Similares a Lectina de Células NK/química , Sitios de Unión , Células Cultivadas , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células K562 , Ligandos , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Unión Proteica , Imagen Individual de Molécula
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38647154

RESUMEN

Molecular generative models have exhibited promising capabilities in designing molecules from scratch with high binding affinities in a predetermined protein pocket, offering potential synergies with traditional structural-based drug design strategy. However, the generative processes of such models are random and the atomic interaction information between ligand and protein are ignored. On the other hand, the ligand has high propensity to bind with residues called hotspots. Hotspot residues contribute to the majority of the binding free energies and have been recognized as appealing targets for designed molecules. In this work, we develop an interaction prompt guided diffusion model, InterDiff to deal with the challenges. Four kinds of atomic interactions are involved in our model and represented as learnable vector embeddings. These embeddings serve as conditions for individual residue to guide the molecular generative process. Comprehensive in silico experiments evince that our model could generate molecules with desired ligand-protein interactions in a guidable way. Furthermore, we validate InterDiff on two realistic protein-based therapeutic agents. Results show that InterDiff could generate molecules with better or similar binding mode compared to known targeted drugs.


Asunto(s)
Proteínas , Proteínas/química , Proteínas/metabolismo , Ligandos , Unión Proteica , Diseño de Fármacos , Modelos Moleculares , Algoritmos , Sitios de Unión , Simulación por Computador
10.
Blood ; 143(4): 320-335, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37801708

RESUMEN

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas de Unión al ARN , Humanos , Evolución Clonal/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Recurrencia , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(28): e2217301120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399423

RESUMEN

A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Receptores de Antígenos de Linfocitos T , Transducción de Señal/fisiología , Fosforilación , Antígenos/metabolismo
12.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38822662

RESUMEN

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Schistosoma japonicum , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/inmunología , Ratones , Schistosoma japonicum/inmunología , Sulfato de Dextran/toxicidad , Femenino , Inmunización/métodos , Óvulo , Ratones Endogámicos C57BL
13.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

14.
Proc Natl Acad Sci U S A ; 119(30): e2203849119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867815

RESUMEN

Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/ß-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.


Asunto(s)
Hepatocitos , Mitosis , Proteínas Represoras , Vía de Señalización Wnt , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/metabolismo , beta Catenina/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(10): e2114303119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238684

RESUMEN

Identifying inhibitors of pathogenic proteins is the major strategy of targeted drug discoveries. This strategy meets challenges in targeting neurodegenerative disorders such as Huntington's disease (HD), which is mainly caused by the mutant huntingtin protein (mHTT), an "undruggable" pathogenic protein with unknown functions. We hypothesized that some of the chemical binders of mHTT may change its conformation and/or stability to suppress its downstream toxicity, functioning similarly to an "inhibitor" under a broader definition. We identified 21 potential mHTT selective binders through a small-molecule microarray­based screening. We further tested these compounds using secondary phenotypic screens for their effects on mHTT-induced toxicity and revealed four potential mHTT-binding compounds that may rescue HD-relevant phenotypes. Among them, a Food and Drug Administration­approved drug, desonide, was capable of suppressing mHTT toxicity in HD cellular and animal models by destabilizing mHTT through enhancing its polyubiquitination at the K6 site. Our study reveals the therapeutic potential of desonide for HD treatment and provides the proof of principle for a drug discovery pipeline: target-binder screens followed by phenotypic validation and mechanistic studies.


Asunto(s)
Desonida , Proteína Huntingtina , Enfermedad de Huntington , Mutación , Animales , Desonida/química , Desonida/farmacología , Modelos Animales de Enfermedad , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Estabilidad Proteica/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 119(48): e2213313119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417445

RESUMEN

Hong Kong has implemented stringent public health and social measures (PHSMs) to curb each of the four COVID-19 epidemic waves since January 2020. The third wave between July and September 2020 was brought under control within 2 m, while the fourth wave starting from the end of October 2020 has taken longer to bring under control and lasted at least 5 mo. Here, we report the pandemic fatigue as one of the potential reasons for the reduced impact of PHSMs on transmission in the fourth wave. We contacted either 500 or 1,000 local residents through weekly random-digit dialing of landlines and mobile telephones from May 2020 to February 2021. We analyze the epidemiological impact of pandemic fatigue by using the large and detailed cross-sectional telephone surveys to quantify risk perception and self-reported protective behaviors and mathematical models to incorporate population protective behaviors. Our retrospective prediction suggests that an increase of 100 daily new reported cases would lead to 6.60% (95% CI: 4.03, 9.17) more people worrying about being infected, increase 3.77% (95% CI: 2.46, 5.09) more people to avoid social gatherings, and reduce the weekly mean reproduction number by 0.32 (95% CI: 0.20, 0.44). Accordingly, the fourth wave would have been 14% (95% CI%: -53%, 81%) smaller if not for pandemic fatigue. This indicates the important role of mitigating pandemic fatigue in maintaining population protective behaviors for controlling COVID-19.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Gripe Humana/prevención & control , Hong Kong/epidemiología , Estudios Transversales , Estudios Retrospectivos , Fatiga/epidemiología , Fatiga/prevención & control
17.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343224

RESUMEN

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Antígenos de Neoplasias
18.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949123

RESUMEN

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

19.
J Infect Dis ; 229(2): 502-506, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37815808

RESUMEN

The time-varying effective reproduction number (Rt at time t) measures the transmissibility of SARS-CoV-2 and is conventionally based on daily case counts, which may suffer from time-varying ascertainment. We analyzed Rt estimates from case counts and severe COVID-19 (intensive care unit admissions, severe or critical cases, and mortality) across 2022 in Hong Kong's fifth and sixth waves of infection. Within the fifth wave, the severe disease-based Rt (3.5) was significantly higher than the case-based Rt (2.4) but not in the sixth wave. During periods with fluctuating underreporting, data based on severe diseases may provide more reliable Rt estimates.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Número Básico de Reproducción , Factores de Tiempo , Evaluación de Resultado en la Atención de Salud
20.
J Am Chem Soc ; 146(27): 18418-18426, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38812275

RESUMEN

Zeolite nanosheets with an extremely thin thickness featuring both unique pore systems and low diffusion resistance have the potential to achieve enhanced catalytic performance in the conversion of bulky molecular biomass. The preparation of unit-cell level nanosheets generally requires complex and costly multifunctional surfactants or an organic structure-directing agent (OSDA). Commercially available and environmentally friendly ionic liquids can also direct the structure of zeolite nanosheets by π-π stacking when these kinds of OSDA are used in large amount. Herein, we first report unit-cell-sized silicogermanate nanosheets of NS-IM-20 (UWY topology), 5 nm in thickness, which were synthesized at a relatively low ionic liquid concentration with the assistance of halide ion (Cl-). The Pd-loaded NS-IM-20 nanosheets with a hierarchical porosity and moderate acidity act as promising bifunctional catalysts for selective biomass conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA