Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(1): e2304806, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649194

RESUMEN

The sluggish kinetics in Ni-rich cathodes at subzero temperatures causes decreased specific capacity and poor rate capability, resulting in slow and unstable charge storage. So far, the driving force of this phenomenon remains a mystery. Herein, with the help of in-situ X-ray diffraction and time of flight secondary ion mass spectrometry techniques, the continuous accumulation of both the cathode electrolyte interphase (CEI) film formation and the incomplete structure evolution during cycling under subzero temperature are proposed. It is presented that excessively uniform and thick CEI film generated at subzero temperatures would block the diffusion of Li+ -ions, resulting in incomplete phase evolution and clear charge potential delay. The incomplete phase evolution throughout the Li+ -ion intercalation/de-intercalation processes would further cause low depth of discharge and poor electrochemical reversibility with low initial Coulombic efficiency, as well. In addition, the formation of the thick and uniform CEI film would also consume Li+ -ions during the charging process. This discovery highlights the effects of the CEI film formation behavior and incomplete phase evolution in restricting electrochemical kinetics under subzero temperatures, which the authors believe would promote the further application of the Ni-rich cathodes.

2.
Mol Cell Biol ; 36(22): 2824-2837, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27573018

RESUMEN

Tissue cells respond to changes in tensional forces with proliferation or death through the control of RhoA. However, the response coupling mechanisms that link force with RhoA activation are poorly understood. We found that tension applied to fibronectin-coated microbeads caused recruitment of all three isoforms of the Shc adapter (p66Shc, p52Shc, and p46Shc) to adhesion complexes. The Shc PTB domain was necessary and sufficient for this recruitment, and screening studies revealed the direct interactions with the FERM domain of focal adhesion kinase (FAK) that were required for Shc translocation to adhesion complexes. The FAK/p66Shc complex specifically bound and activated the Rho guanyl exchange factors (GEFs) p115-RhoGEF and GEF-H1, leading to tension-induced RhoA activation. In contrast, the FAK/p52Shc complex bound SOS1 but not the Rho GEFs to mediate tension-induced Ras activation. Nuclear translocation and activation of the YAP/TAZ transcription factors on firm substrates required the FAK/p66Shc/Rho GEF complex, and both proliferation on firm substrates and anoikis in suspension required signaling through p66Shc and its associated Rho GEFs. These studies reveal the binary and exclusive assignment of p66Shc and p52Shc to tension-induced Rho or Ras signals, respectively, and suggest an integrated role for the two Shc isoforms in coordinating the cellular response to mechanical stimuli.

3.
Mol Cell Biol ; 30(14): 3553-68, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20457808

RESUMEN

The unfolded-protein response (UPR) of the endoplasmic reticulum (ER) has been linked to oxidant production, although the molecular details and functional significance of this linkage are poorly understood. Using a ratiometric H(2)O(2) sensor targeted to different subcellular compartments, we demonstrate specific production of H(2)O(2) by the ER in response to the stressors tunicamycin and HIV-1 Tat, but not to thapsigargin or dithiothreitol. Knockdown of the oxidase Nox4, expressed on ER endomembranes, or expression of ER-targeted catalase blocked ER H(2)O(2) production by tunicamycin and Tat and prevented the UPR following exposure to these two agonists, but not to thapsigargin or dithiothreitol. Tat also triggered Nox4-dependent, sustained activation of Ras leading to ERK, but not phosphatidylinositol 3-kinase (PI3K)/mTOR, pathway activation. Cell fractionation studies and green fluorescent protein (GFP) fusions of GTPase effector binding domains confirmed selective activation of endogenous RhoA and Ras on the ER surface, with ER-associated K-Ras acting upstream of the UPR and downstream of Nox4. Notably, the Nox4/Ras/ERK pathway induced autophagy, and suppression of autophagy unmasked cell death and prevented differentiation of endothelial cells in 3-dimensional matrix. We conclude that the ER surface provides a platform to spatially organize agonist-specific Nox4-dependent oxidative signaling events, leading to homeostatic protective mechanisms rather than oxidative stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Proteínas ras/metabolismo , Secuencia de Bases , Catalasa/metabolismo , Células Cultivadas , Cartilla de ADN/genética , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Técnicas de Silenciamiento del Gen , Homeostasis , Humanos , Técnicas In Vitro , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Estrés Oxidativo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tapsigargina/farmacología , Tunicamicina/farmacología , Respuesta de Proteína Desplegada , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA