Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(7): 1267-1278, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36627209

RESUMEN

Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Sarcoma , Femenino , Ratas , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Hiperalgesia/metabolismo , Nocicepción , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Sarcoma/complicaciones , Sarcoma/metabolismo , ADN/metabolismo , Ganglios Espinales/metabolismo
2.
Brain ; 146(9): 3866-3884, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012681

RESUMEN

Nerve injury to peripheral somatosensory system causes refractory neuropathic pain. Maladaptive changes of gene expression in primary sensory neurons are considered molecular basis of this disorder. Long non-coding RNAs (lncRNAs) are key regulators of gene transcription; however, their significance in neuropathic pain remains largely elusive.Here, we reported a novel lncRNA, named sensory neuron-specific lncRNA (SS-lncRNA), for its expression exclusively in dorsal root ganglion (DRG) and trigeminal ganglion. SS-lncRNA was predominantly expressed in small DRG neurons and significantly downregulated due to a reduction of early B cell transcription factor 1 in injured DRG after nerve injury. Rescuing this downregulation reversed a decrease of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in injured DRG and alleviated nerve injury-induced nociceptive hypersensitivity. Conversely, DRG downregulation of SS-lncRNA reduced the expression of KCNN1, decreased total potassium currents and afterhyperpolarization currents and increased excitability in DRG neurons and produced neuropathic pain symptoms.Mechanistically, downregulated SS-lncRNA resulted in the reductions of its binding to Kcnn1 promoter and heterogeneous nuclear ribonucleoprotein M (hnRNPM), consequent recruitment of less hnRNPM to the Kcnn1 promoter and silence of Kcnn1 gene transcription in injured DRG.These findings indicate that SS-lncRNA may relieve neuropathic pain through hnRNPM-mediated KCNN1 rescue in injured DRG and offer a novel therapeutic strategy specific for this disorder.


Asunto(s)
Neuralgia , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Células Receptoras Sensoriales/metabolismo , Neuralgia/terapia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
3.
J Neurosci ; 41(19): 4349-4365, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846230

RESUMEN

Complex regional pain syndrome (CRPS) is a chronic pain disorder with a clear acute-to-chronic transition. Preclinical studies demonstrate that toll-like receptor 4 (TLR4), expressed by myeloid-lineage cells, astrocytes, and neurons, mediates a sex-dependent transition to chronic pain; however, evidence is lacking on which exact TLR4-expressing cells are responsible. We used complementary pharmacologic and transgenic approaches in mice to more specifically manipulate myeloid-lineage TLR4 and outline its contribution to the transition from acute-to-chronic CRPS based on three key variables: location (peripheral vs central), timing (prevention vs treatment), and sex (male vs female). We demonstrate that systemic TLR4 antagonism is more effective at improving chronic allodynia trajectory when administered at the time of injury (early) in the tibial fracture model of CRPS in both sexes. In order to clarify the contribution of myeloid-lineage cells peripherally (macrophages) or centrally (microglia), we rigorously characterize a novel spatiotemporal transgenic mouse line, Cx3CR1-CreERT2-eYFP;TLR4fl/fl (TLR4 cKO) to specifically knock out TLR4 only in microglia and no other myeloid-lineage cells. Using this transgenic mouse, we find that early TLR4 cKO results in profound improvement in chronic, but not acute, allodynia in males, with a significant but less robust effect in females. In contrast, late TLR4 cKO results in partial improvement in allodynia in both sexes, suggesting that downstream cellular or molecular TLR4-independent events may have already been triggered. Overall, we find that the contribution of TLR4 is time- and microglia-dependent in both sexes; however, females also rely on peripheral myeloid-lineage (or other TLR4 expressing) cells to trigger chronic pain.SIGNIFICANCE STATEMENT The contribution of myeloid cell TLR4 to sex-specific pain progression remains controversial. We used complementary pharmacologic and transgenic approaches to specifically manipulate TLR4 based on three key variables: location (peripheral vs central), timing (prevention vs treatment), and sex (male vs female). We discovered that microglial TLR4 contributes to early pain progression in males, and to a lesser extent in females. We further found that maintenance of chronic pain likely occurs through myeloid TLR4-independent mechanisms in both sexes. Together, we define a more nuanced contribution of this receptor to the acute-to-chronic pain transition in a mouse model of complex regional pain syndrome.


Asunto(s)
Dolor Crónico/genética , Células Mieloides/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Síndromes de Dolor Regional Complejo/genética , Femenino , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Dimensión del Dolor/efectos de los fármacos , Caracteres Sexuales , Sulfonamidas/uso terapéutico , Fracturas de la Tibia/complicaciones , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética
4.
Stroke ; 52(7): 2393-2403, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34102854

RESUMEN

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/biosíntesis , Hemorragia Cerebral/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Receptor Toll-Like 4/biosíntesis , Adenosina/administración & dosificación , Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Técnicas de Silenciamiento del Gen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microinyecciones/métodos , Neuralgia/genética , Neuralgia/patología , Neuronas/patología , Tálamo/patología , Receptor Toll-Like 4/genética
5.
Br J Anaesth ; 126(3): 706-719, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33303185

RESUMEN

BACKGROUND: Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to neuropathic pain genesis. Eukaryotic initiation factor 4 gamma 2 (eIF4G2) is a general repressor of cap-dependent mRNA translation. Whether DRG eIF4G2 participates in nerve injury-induced alternations in gene expression and nociceptive hypersensitivity is unknown. METHODS: The expression and distribution of eIF4G2 mRNA and protein in mouse DRG after spinal nerve ligation (SNL) were assessed. Effects of eIF4G2 siRNA microinjected through a glass micropipette into the injured DRG on the SNL-induced DRG mu opioid receptor (MOR) and Kv1.2 downregulation and nociceptive hypersensitivity were examined. In addition, effects of DRG microinjection of adeno-associated virus 5-expressing eIF4G2 (AAV5-eIF4G2) on basal DRG MOR and Kv1.2 expression and nociceptive thresholds were analysed. RESULTS: eIF4G2 protein co-expressed with Kv1.2 and MOR in DRG neurones. Levels of eIF4G2 mRNA (1.7 [0.24] to 2.3 [0.14]-fold of sham, P<0.01) and protein (1.6 [0.14] to 2.5 [0.22]-fold of sham, P<0.01) in injured DRG were time-dependently increased on days 3-14 after SNL. Blocking increased eIF4G2 through microinjection of eIF4G2 siRNA into the injured DRG attenuated SNL-induced downregulation of DRG MOR and Kv1.2 and development and maintenance of nociceptive hypersensitivities. DRG microinjection of AAV5-eIF4G2 reduced DRG MOR and Kv1.2 expression and elicited hypersensitivities to mechanical, heat and cold stimuli in naïve mice. CONCLUSIONS: eIF4G2 contributes to neuropathic pain through participation in downregulation of Kv1.2 and MOR in injured DRG and is a potential target for treatment of this disorder.


Asunto(s)
Factor 4G Eucariótico de Iniciación/genética , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Canal de Potasio Kv.1.2/genética , Neuralgia/genética , Receptores Opioides mu/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Masculino , Ratones , Neuralgia/metabolismo , Neuronas/metabolismo , Dimensión del Dolor
6.
J Neurosci ; 39(33): 6595-6607, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31182635

RESUMEN

Expressional changes of pain-associated genes in primary sensory neurons of DRG are critical for neuropathic pain genesis. DNA methyltransferase (DNMT)-triggered DNA methylation silences gene expression. We show here that DNMT1, a canonical maintenance methyltransferase, acts as the de novo DNMT and is required for neuropathic pain genesis likely through repressing at least DRG Kcna2 gene expression in male mice. Peripheral nerve injury upregulated DNMT1 expression in the injured DRG through the transcription factor cAMP response element binding protein-triggered transcriptional activation of Dnmt1 gene. Blocking this upregulation prevented nerve injury-induced DNA methylation within the promoter and 5'-untranslated region of Kcna2 gene, rescued Kcna2 expression and total Kv current, attenuated hyperexcitability in the injured DRG neurons, and alleviated nerve injury-induced pain hypersensitivities. Given that Kcna2 is a key player in neuropathic pain, our findings suggest that DRG DNMT1 may be a potential target for neuropathic pain management.SIGNIFICANCE STATEMENT In the present study, we reported that DNMT1, a canonical DNA maintenance methyltransferase, is upregulated via the activation of the transcription factor CREB in the injured DRG after peripheral nerve injury. This upregulation was responsible for nerve injury-induced de novo DNA methylation within the promoter and 5'-untranslated region of the Kcna2 gene, reductions in Kcna2 expression and Kv current and increases in neuronal excitability in the injured DRG. Since pharmacological inhibition or genetic knockdown of DRG DNMT1 alleviated nerve injury-induced pain hypersensitivities, DRG DNMT1 contributes to neuropathic pain genesis partially through repression of DRG Kcna2 gene expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Represión Epigenética/fisiología , Canal de Potasio Kv.1.2/metabolismo , Neuralgia/metabolismo , Neuronas Aferentes/metabolismo , Animales , Ganglios Espinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/metabolismo
7.
Brain Behav Immun ; 87: 840-851, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205121

RESUMEN

Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L4) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L4 DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L4 dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L3/4 DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.


Asunto(s)
Neuralgia , Células Receptoras Sensoriales , Receptor Toll-Like 7 , Animales , Femenino , Ganglios Espinales , Hiperalgesia , Masculino , Glicoproteínas de Membrana , Ratones , FN-kappa B
8.
Anesth Analg ; 131(2): 450-463, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32371742

RESUMEN

Perioperative medicine is changing from a "protocol-based" approach to a progressively personalized care model. New molecular techniques and comprehensive perioperative medical records allow for detection of patient-specific phenotypes that may better explain, or even predict, a patient's response to perioperative stress and anesthetic care. Basic science technology has significantly evolved in recent years with the advent of powerful approaches that have translational relevance. It is incumbent on us as a primarily clinical specialty to have an in-depth understanding of rapidly evolving underlying basic science techniques to incorporate such approaches into our own research, critically interpret the literature, and improve future anesthesia patient care. This review focuses on 3 important and most likely practice-changing basic science techniques: next-generation sequencing (NGS), clustered regularly interspaced short palindromic repeat (CRISPR) modulations, and inducible pluripotent stem cells (iPSCs). Each technique will be described, potential advantages and limitations discussed, open questions and challenges addressed, and future developments outlined. We hope to provide insight for practicing physicians when confronted with basic science articles and encourage investigators to apply "state-of-the-art" technology to their future experiments.


Asunto(s)
Anestesiología/tendencias , Investigación Biomédica/tendencias , Guías de Práctica Clínica como Asunto , Proyectos de Investigación/tendencias , Anestesiología/normas , Investigación Biomédica/normas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Guías de Práctica Clínica como Asunto/normas
9.
J Neurosci ; 38(46): 9883-9899, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30266739

RESUMEN

The transmission of normal sensory and/or acute noxious information requires intact expression of pain-associated genes within the pain pathways of nervous system. Expressional changes of these genes after peripheral nerve injury are also critical for neuropathic pain induction and maintenance. Methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, regulates gene transcriptional activity. We report here that MBD1 in the primary sensory neurons of DRG is critical for the genesis of acute pain and neuropathic pain as DRG MBD1-deficient mice exhibit the reduced responses to acute mechanical, heat, cold, and capsaicin stimuli and the blunted nerve injury-induced pain hypersensitivities. Furthermore, DRG overexpression of MBD1 leads to spontaneous pain and evoked pain hypersensitivities in the WT mice and restores acute pain sensitivities in the MBD1-deficient mice. Mechanistically, MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 is likely a key player under the conditions of acute pain and neuropathic pain.SIGNIFICANCE STATEMENT In the present study, we revealed that the mice with deficiency of methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, in the DRG displayed the reduced responses to acute noxious stimuli and the blunted neuropathic pain. We also showed that DRG overexpression of MBD1 produced the hypersensitivities to noxious stimuli in the WT mice and rescued acute pain sensitivities in the MBD1-deficient mice. We have also provided the evidence that MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 may participate in the genesis of acute pain and neuropathic pain likely through regulating DNMT3a-controlled Oprm1 and Kcna2 gene expression in the DRG neurons.


Asunto(s)
Dolor Agudo/metabolismo , Proteínas de Unión al ADN/biosíntesis , Epigénesis Genética/fisiología , Canal de Potasio Kv.1.2/biosíntesis , Neuralgia/metabolismo , Receptores Opioides mu/biosíntesis , Dolor Agudo/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Ganglios Espinales/química , Ganglios Espinales/metabolismo , Silenciador del Gen/fisiología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/genética , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/genética , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo
10.
Int J Cancer ; 145(8): 2122-2134, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30684388

RESUMEN

Antineoplastic drugs induce dramatic transcriptional changes in dorsal root ganglion (DRG) neurons, which may contribute to chemotherapy-induced neuropathic pain. K2p 1.1 controls neuronal excitability by setting the resting membrane potential. Here, we report that systemic injection of the chemotherapy agent paclitaxel time-dependently downregulates the expression of K 2p 1.1 mRNA and its coding K2p 1.1 protein in the DRG neurons. Rescuing this downregulation mitigates the development and maintenance of paclitaxel-induced mechanical allodynia and heat hyperalgesia. Conversely, in the absence of paclitaxel administration, mimicking this downregulation decreases outward potassium current and increases excitability in the DRG neurons, leading to the enhanced responses to mechanical and heat stimuli. Mechanically, the downregulation of DRG K 2p 1.1 mRNA is attributed to paclitaxel-induced increase in DRG DNMT3a, as blocking this increase reverses the paclitaxel-induced the decrease of DRG K2p 1.1 and mimicking this increase reduces DRG K2p 1.1 expression. In addition, paclitaxel injection increases the binding of DNMT3a to the K 2p 1.1 gene promoter region and elevates the level of DNA methylation within this region in the DRG. These findings suggest that DNMT3a-triggered downregulation of DRG K2p 1.1 may contribute to chemotherapy-induced neuropathic pain.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo , Paclitaxel/administración & dosificación , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Masculino , Ratones Noqueados , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/genética , Interferencia de ARN , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
11.
Haematologica ; 103(7): 1124-1135, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29545351

RESUMEN

Sickle cell disease is associated with acute painful episodes and chronic intractable pain. Endothelin-1, a known pain inducer, is elevated in the blood plasma of both sickle cell patients and mouse models of sickle cell disease. We show here that the levels of endothelin-1 and its endothelin type A receptor are increased in the dorsal root ganglia of a mouse model of sickle cell disease. Pharmacologic inhibition or neuron-specific knockdown of endothelin type A receptors in primary sensory neurons of dorsal root ganglia alleviated basal and post-hypoxia evoked pain hypersensitivities in sickle cell mice. Mechanistically, endothelin type A receptors contribute to sickle cell disease-associated pain likely through the activation of NF-κB-induced Nav1.8 channel upregulation in primary sensory neurons of sickle cell mice. Our findings suggest that endothelin type A receptor is a potential target for the management of sickle cell disease-associated pain, although this expectation needs to be further verified in clinical settings.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Dolor/etiología , Receptor de Endotelina A/genética , Anemia de Células Falciformes/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endotelina-1/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/diagnóstico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Dolor/diagnóstico , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Receptor de Endotelina A/metabolismo
12.
Mol Pain ; 13: 1744806917701135, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28326939

RESUMEN

Abstract: Peripheral nerve injury-caused hyperexcitability and abnormal ectopic discharges in the primary sensory neurons of dorsal root ganglion (DRG) play a key role in neuropathic pain development and maintenance. The two-pore domain background potassium (K2P) channels have been identified as key determinants of the resting membrane potential and neuronal excitability. However, whether K2P channels contribute to neuropathic pain is still elusive. We reported here that K2P1.1, the first identified mammalian K2P channel, was highly expressed in mouse DRG and distributed in small-, medium-, and large-sized DRG neurons. Unilateral lumbar (L) 4 spinal nerve ligation led to a significant and time-dependent reduction of K2P1.1 mRNA and protein in the ipsilateral L4 DRG, but not in the contralateral L4 or ipsilateral L3 DRG. Rescuing this reduction through microinjection of adeno-associated virus-DJ expressing full-length K2P1.1 mRNA into the ipsilateral L4 DRG blocked spinal nerve ligation-induced mechanical, thermal, and cold pain hypersensitivities during the development and maintenance periods. This DRG viral microinjection did not affect acute pain and locomotor function. Our findings suggest that K2P1.1 participates in neuropathic pain development and maintenance and may be a potential target in the management of this disorder.


Asunto(s)
Ganglios Espinales/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Canales de Potasio/metabolismo , Dolor Agudo/metabolismo , Animales , Masculino , Potenciales de la Membrana/fisiología , Ratones , Neuralgia/fisiopatología , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología
13.
Mol Pain ; 13: 1744806917740681, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056068

RESUMEN

Abstract: Metastatic bone tumor-induced changes in gene transcription and translation in pain-related regions of the nervous system may participate in the development and maintenance of bone cancer pain. Epigenetic modifications including DNA methylation regulate gene transcription. Here, we report that intrathecal injection of decitabine, a DNA methyltransferase (DNMT) inhibitor, dose dependently attenuated the development and maintenance of bone cancer pain induced by injecting prostate cancer cells into the tibia. The level of the de novo DNMT3a, but not DNMT3b, time dependently increased in the ipsilateral L4/5 dorsal horn (not L4/5 dorsal root ganglion) after prostate cancer cells injection. Blocking this increase through microinjection of recombinant adeno-associated virus 5 (AAV5) expressing Dnmt3a shRNA into dorsal horn rescued prostate cancer cells-induced downregulation of dorsal horn Kv1.2 expression and impaired prostate cancer cells-induced pain hypersensitivity. In turn, mimicking this increase through microinjection of AAV5 expressing full-length Dnmt3a into dorsal horn reduced dorsal horn Kv1.2 expression and produced pain hypersensitivity in the absence of prostate cancer cells injection. Administration of neither decitabine nor virus affected locomotor function and acute responses to mechanical, thermal, or cold stimuli. Given that Dnmt3a mRNA is co-expressed with Kcna2 mRNA (encoding Kv1.2) in individual dorsal horn neurons, our findings suggest that increased dorsal horn DNMT3a contributes to bone cancer pain through silencing dorsal horn Kv1.2 expression. DNMT3a may represent a potential new target for cancer pain management.


Asunto(s)
Dolor en Cáncer/fisiopatología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Dolor en Cáncer/metabolismo , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Masculino , Dolor Musculoesquelético/metabolismo , Dolor Musculoesquelético/fisiopatología , Células del Asta Posterior/metabolismo , Ratas , Asta Dorsal de la Médula Espinal/fisiopatología
14.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27927796

RESUMEN

Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. We found that nerve injury-induced increases in G9a and its catalyzed repressive marker H3K9m2 are responsible for epigenetic silencing of Oprm1, Oprk1, and Oprd1 genes in the injured dorsal root ganglia. Blocking these increases rescued dorsal root ganglia Oprm1, Oprk1, and Oprd1 gene expression and morphine or loperamide analgesia and prevented the development of morphine or loperamide-induced analgesic tolerance under neuropathic pain conditions. Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Ganglios Espinales/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Traumatismos de los Nervios Periféricos/patología , Receptores Opioides mu/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Proteína de Unión a CREB/genética , Modelos Animales de Enfermedad , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Lateralidad Funcional , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Loperamida/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Narcóticos/farmacología , Narcóticos/uso terapéutico , Ratas Sprague-Dawley , Receptores Opioides/genética , Receptores Opioides/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Receptor de Nociceptina
15.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27030721

RESUMEN

BACKGROUND: Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. METHODS: The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. RESULTS: Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M-56.12 M in sham vs. 51.08 M-57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve ligation. CONCLUSION: Our findings suggest that next generation RNA sequencing can be used as a promising approach to analyze the changes of whole transcriptomes in dorsal root ganglia following nerve injury and to possibly identify new targets for prevention and treatment of neuropathic pain.


Asunto(s)
Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica/métodos , Traumatismos de los Nervios Periféricos/genética , Empalme Alternativo/genética , Animales , Ganglios Espinales/patología , Genoma , Hiperalgesia/complicaciones , Hiperalgesia/genética , Ligadura , Vértebras Lumbares/patología , Masculino , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal/genética , Nervios Espinales/patología
16.
Anesthesiology ; 125(4): 765-78, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27483126

RESUMEN

BACKGROUND: Peripheral nerve injury-induced gene alterations in the dorsal root ganglion (DRG) and spinal cord likely participate in neuropathic pain genesis. Histone methylation gates gene expression. Whether the suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, contributes to nerve injury-induced nociceptive hypersensitivity is unknown. METHODS: Quantitative real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, or immunohistochemistry were carried out to examine the expression of SUV39H1 mRNA and protein in rat DRG and dorsal horn and its colocalization with DRG µ-opioid receptor (MOR). The effects of a SUV39H1 inhibitor (chaetocin) or SUV39H1 siRNA on fifth lumbar spinal nerve ligation (SNL)-induced DRG MOR down-regulation and nociceptive hypersensitivity were examined. RESULTS: SUV39H1 was detected in neuronal nuclei of the DRG and dorsal horn. It was distributed predominantly in small DRG neurons, in which it coexpressed with MOR. The level of SUV39H1 protein in both injured DRG and ipsilateral fifth lumbar dorsal horn was time dependently increased after SNL. SNL also produced an increase in the amount of SUV39H1 mRNA in the injured DRG (n = 6/time point). Intrathecal chaetocin or SUV39H1 siRNA as well as DRG or intraspinal microinjection of SUV39H1 siRNA impaired SNL-induced allodynia and hyperalgesia (n = 5/group/treatment). DRG microinjection of SUV39H1 siRNA also restored SNL-induced DRG MOR down-regulation (n = 6/group). CONCLUSIONS: The findings of this study suggest that SUV39H1 contributes to nerve injury-induced allodynia and hyperalgesia through gating MOR expression in the injured DRG. SUV39H1 may be a potential target for the therapeutic treatment of nerve injury-induced nociceptive hypersensitivity.


Asunto(s)
Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Metiltransferasas/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas Represoras/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Hiperalgesia/genética , Inmunohistoquímica , Masculino , Metiltransferasas/genética , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Mol Pain ; 11: 27, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25962909

RESUMEN

The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).


Asunto(s)
Dolor Crónico/genética , Dolor Crónico/terapia , Terapia Genética , Vectores Genéticos , Canales de Potasio con Entrada de Voltaje/genética , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Humanos , Manejo del Dolor/métodos
18.
Reprod Biol Endocrinol ; 13: 94, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26282993

RESUMEN

BACKGROUND: Estrogen synthesis is an important function of the mammalian ovary. Estrogen plays important roles in many biological processes, including follicular development, oocyte maturation and endometrial proliferation, and dysfunctions in estrogen synthesis contribute to the development of polycystic ovary syndrome and premature ovarian failure. Classical signaling cascades triggered by follicle-stimulating hormone induce estrogen synthesis via the upregulation of Cyp19a1 in granulosa cells (GCs). This study aimed to determine the effect of microRNA-132 (miR-132) on estradiol synthesis in GCs. METHODS: Primary mouse GCs were collected from ovaries of 21-day-old immature ICR mice through follicle puncture. GCs were cultured and treated with the stable cyclic adenosine monophosphate analog 8-Br-cAMP or transfected with miR-132 mimics, Nurr1-specific small interfering RNA oligonucleotides and Flag-Nurr1 plasmids. Concentrations of estradiol and progesterone in culture medium were determined by an automated chemiluminescence-based assay. Quantitative real time PCR and western blot were performed to identify the effect of miR-132 on Cyp19a1, Cyp11a1 and an orphan nuclear receptor-Nurr1 expression in GCs. Direct suppression of Nurr1 via its 3'-untranslated region by miR-132 were further verified using luciferase reporter assays. RESULTS: The expression level of miR-132 in cultured mouse GCs was significantly elevated during 48 h of treatment with 8-Br-cAMP. The synthesis of estradiol increased after the overexpression of miR-132 in mouse GCs. The real-time PCR results demonstrated that miR-132 induced the expression of Cyp19a1 significantly. Nurr1, an orphan nuclear receptor that suppresses Cyp19a1 expression, was found to be a direct target of miR-132. Nurr1 was suppressed by miR-132, as indicated by a luciferase assay and Western blotting. The knockdown of Nurr1 primarily elevated the synthesis of estradiol and partially attenuated the miR-132-induced estradiol elevation, and the ectopic expression of Flag-Nurr1 abrogated the stimulatory effect of miR-132 on estradiol synthesis in mouse GCs. CONCLUSIONS: Our findings suggest that miR-132 is involved in the cAMP signaling pathway and promotes estradiol synthesis via the translational repression of Nurr1 in ovarian GCs.


Asunto(s)
Estradiol/biosíntesis , Células de la Granulosa/metabolismo , MicroARNs/biosíntesis , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Folículo Ovárico/metabolismo , Animales , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Estradiol/genética , Femenino , Células de la Granulosa/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos ICR , MicroARNs/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Folículo Ovárico/efectos de los fármacos
19.
Br J Pharmacol ; 181(5): 735-751, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37782223

RESUMEN

BACKGROUND AND PURPOSE: Peripheral nerve trauma-induced dysregulation of pain-associated genes in the primary sensory neurons of dorsal root ganglion (DRG) contributes to neuropathic pain genesis. RNA-binding proteins participate in gene transcription. We hypothesized that RALY, an RNA-binding protein, participated in nerve trauma-induced dysregulation of DRG pain-associated genes and nociceptive hypersensitivity. METHODS AND RESULTS: Immunohistochemistry staining showed that RALY was expressed exclusively in the nuclei of DRG neurons. Peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve produced time-dependent increases in the levels of Raly mRNA and RALY protein in injured DRG. Blocking this increase through DRG microinjection of adeno-associated virus 5 (AAV5)-expressing Raly shRNA reduced the CCI-induced elevation in the amount of eukaryotic initiation factor 4 gamma 2 (Eif4g2) mRNA and Eif4g2 protein in injured DRG and mitigated the development and maintenance of CCI-induced nociceptive hypersensitivity, without altering basal (acute) response to noxious stimuli and locomotor activity. Mimicking DRG increased RALY through DRG microinjection of AAV5 expressing Raly mRNA up-regulated the expression of Eif4g2 mRNA and Eif4g2 protein in the DRG and led to hypersensitive responses to noxious stimuli in the absence of nerve trauma. Mechanistically, CCI promoted the binding of RALY to the promoter of Eif4g2 gene and triggered its transcriptional activity. CONCLUSION AND IMPLICATIONS: Our findings indicate that RALY participates in nerve trauma-induced nociceptive hypersensitivity likely through transcriptionally triggering Eif4g2 expression in the DRG. RALY may be a potential target in neuropathic pain management.


Asunto(s)
Hiperalgesia , Neuralgia , Ganglios Espinales/metabolismo , Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nocicepción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo
20.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712251

RESUMEN

Genome-wide association studies (GWAS) have identified many gene polymorphisms associated with an increased risk of developing Late Onset Alzheimer's Disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing microglia innate immune responses and lipid metabolism. Angiotensin Converting Enzyme (ACE), a GWAS LOAD risk-associated gene best known for its role in regulating systemic blood pressure, also enhances innate immunity and lipid processing in peripheral myeloid cells, but a role for ACE in modulating the function of myeloid-derived microglia remains unexplored. Using novel mice engineered to express ACE in microglia and CNS associated macrophages (CAMs), we find that ACE expression in microglia reduces Aß plaque load, preserves vulnerable neurons and excitatory synapses, and greatly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of Alzheimer's Disease (AD). ACE-expressing microglia show enhanced Aß phagocytosis and endolysosomal trafficking, increased clustering around amyloid plaques, and increased SYK tyrosine kinase activation downstream of the major Aß receptors, TREM2 and CLEC7A. Single microglia sequencing and digital spatial profiling identifies downstream SYK signaling modules that are expressed by ACE expression in microglia that mediate endolysosomal biogenesis and trafficking, mTOR and PI3K/AKT signaling, and increased oxidative phosphorylation, while gene silencing or pharmacologic inhibition of SYK activity in ACE-expressing microglia abrogates the potentiated Aß engulfment and endolysosomal trafficking. These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing microglia as a cell-based therapy to augment endogenous microglial responses to Aß in AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA