Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050014

RESUMEN

Reaction of [Au(tht)2](ClO4) (tht = tetrahydrothiophene), [Cu(CH3CN)4](ClO4), 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H3decz), and bis(2-diphenylphosphinophenyl)ether (POP) in the presence of triethylamine (NEt3) gave the cluster complex Au4Cu2(decz)2(POP)2 as yellow crystals. As revealed by X-ray crystallography, the Au4Cu2 cluster exhibits scissor-like structure sustained by two decz and two POP ligands and stabilized by Au-Cu and Au-Au interactions. The Au4Cu2 cluster shows bright yellow to orange photoluminescence upon irradiation at >300 nm, arising from 3[π (decz)→5d (Au)] 3LMCT (ligand-to-metal charge transfer) and 3[π→π* (decz)] 3IL (intraligand) triplet states as revealed by theoretical and computational studies. When it is mechanically ground, reversible phosphorescence conversion from yellow to red is observed owing to more compact molecular packing and thus stronger intermetallic interaction. Variable-temperature luminescence studies reveal that it displays distinct red-shifts of the emission whether the temperature is elevated or lowered from ambient temperature, suggestive of exceptional thermochromic phosphorescence characteristics.

2.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408524

RESUMEN

Two heteroctanuclear Au4Ag4 cluster complexes of 4,5-diethynylacridin-9-one (H2L) were prepared through the self-assembly reactions of [Au(tht)2](CF3SO3), Ag(tht)(CF3SO3), H2L and PPh3 or PPh2Py (2-(diphenylphosphino)pyridine). The Au4Ag4 cluster consists of a [Au4L4]4- and four [Ag(PPh3)]+ or [Ag(PPh2Py)]+ units with Au4L4 framework exhibiting a twisted paper clip structure. In CH2Cl2 solutions at ambient temperature, both compounds show ligand fluorescence at ca. 463 nm as well as phosphorescence at 650 nm for 1 and 630 nm for 2 resulting from admixture of 3IL (intraligand) of L ligand, 3LMCT (from L ligand to Au4Ag4) and 3MC (metal-cluster) triplet states. Crystals or crystalline powders manifest bright yellow-green phosphorescence with vibronic-structured emission bands at 530 (568sh) nm for complex 1 and 536 (576sh) nm for complex 2. Upon mechanical grinding, yellow-green emission in the crystalline state is dramatically converted to red luminescence centered at ca. 610 nm with a drastic redshift of the emission after crystal packing is destroyed.


Asunto(s)
Luminiscencia , Ligandos
3.
Anal Chem ; 86(22): 11434-9, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25340621

RESUMEN

Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes.


Asunto(s)
Reactivos de Enlaces Cruzados/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Plomo/análisis , Plomo/metabolismo , Colorimetría , Oro/química , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas , Platino (Metal)/química
4.
BMC Chem ; 17(1): 107, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649082

RESUMEN

BACKGROUND: This study establishes a UHPLC‒MS/MS method for the detection of zanubrutinib and explores its interaction with fluconazole and isavuconazole in rats. METHODS: A protein precipitation method using acetonitrile was used to prepare plasma samples using ibrutinib as an internal standard. Chromatographic separation and mass spectrometric detection of the analytes and internal standards were performed on a Shimadzu 8040 UHPLC‒MS/MS equipped with a Shim-pack velox C18 column (2.1 × 50 mm, 2.7 µm). Methanol and 0.1% formic acid-water were used as mobile phases. Intraday and interday precision and accuracy, extraction recoveries, and matrix effects of this method were determined. The linearity and sample stability of the method were assessed. Eighteen male Sprague‒Dawley (SD) rats were randomly divided into three groups with zanubrutinib (30 mg/kg) alone, zanubrutinib in combination with fluconazole (20 mg/kg) or zanubrutinib in combination with isavuconazole (20 mg/kg). Blood samples (200 µL) were collected at designated time points (ten evenly distributed time points within 12 h). The concentration of zanubrutinib was determined using the UHPLC‒MS/MS method developed in this study. RESULTS: The typical fragment ions were m/z 472.15 → 290.00 for zanubrutinib and m/z 441.20 → 138.10 for ibrutinib (IS). The range of the standard curve was 1-1000 ng/mL with a regressive coefficient (R2) of 0.999. The recoveries and matrix effects were 91.9-98.2% and 97.5-106.3%, respectively, at different concentration levels. The values for intra- and interday RSD% were lower than 9.8% and 5.8%, respectively. The RSD% value was less than 10.3%, and the RE% value was less than ± 4.0% under different storage conditions. Analysis of pharmacokinetic results suggested that coadministration with isavuconazole or fluconazole significantly increased the area under the curve (1081.67 ± 43.81 vs. 1267.55 ± 79.35 vs. 1721.61 ± 219.36), peak plasma concentration (332.00 ± 52.79 vs. 396.05 ± 37.19 vs. 494.51 ± 130.68), and time to peak (1.83 ± 0.41 vs. 2.00 ± 0.00 vs. 2.17 ± 0.41) compared to zanubrutinib alone. CONCLUSION: This study provides information to understand the metabolism of zanubrutinib with concurrent use with isavuconazole or fluconazole, and further clinical trials are needed to validate the results in animals.

5.
Brain Stimul ; 16(3): 819-827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182683

RESUMEN

BACKGROUND: Trigeminal nerve stimulation (TNS) has been proposed as a promising intervention for coma awakening. However, the effect of TNS on patients with prolonged disorders of consciousness (pDoC) is still unclear. OBJECTIVE: This study aimed to investigate the therapeutic effects of TNS in pDoC caused by stroke, trauma, and anoxia. METHODS: A total of 60 patients (male =25, female =35) aged over 18 who were in a vegetative state or minimally conscious state were randomly assigned to the TNS (N = 30) or sham TNS (N = 30) groups. 4 weeks of intervention and a followed up for 8 weeks were performed. The Glasgow Coma Scale (GCS) and Coma Recovery Scale-Revised (CRS-R) scores as primary outcomes were assessed at baseline and at 2, 4, 8, and 12 weeks. RESULTS: The score changes in the TNS group over time for CRS-R (2-week: mean difference = 0.9, 95% CI = [0.3, 1.5], P = 0.006; 4-week: 1.6, 95% CI = [0.8, 2.5], P < 0.001; 8-week: mean difference = 2.4, 95% CI = [1.3, 3.5], P < 0.001; 12-week: mean difference = 2.3, 95% CI = [1.1, 3.4], P < 0.001) and GCS (4-week: mean difference = 0.7, 95% CI = [0.3, 1.2], P = 0.002; 8-week: mean difference = 1.1, 95% CI = [0.6, 1.7], P < 0.001; 12-week: 1.1, 95% CI = [0.5, 1.7], P = 0.003) were higher than those in the sham group. 18-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) revealed that the metabolism of the right parahippocampal cortex, right precuneus, and bilateral middle cingulate cortex was significantly increased in TNS group. CONCLUSION: The results of this study indicate that TNS could increase local brain metabolism and may promote functional recovery in patients with prolonged disorders of consciousness. REGISTRATION INFORMATION: Name of the registry: Chinese Clinical Trial Registry. REGISTRATION NUMBER: ChiCTR1900025573. The date that the study was submitted to a registry: 2019-09-01. The date when the first patient was enrolled was 2021-01-20.


Asunto(s)
Coma , Trastornos de la Conciencia , Humanos , Masculino , Femenino , Adolescente , Adulto , Resultado del Tratamiento , Trastornos de la Conciencia/terapia , Estado de Conciencia/fisiología , Estado Vegetativo Persistente/terapia , Nervio Trigémino
6.
Front Pharmacol ; 13: 960311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935882

RESUMEN

Almonertinib was approved for the first-line treatment of advanced NSCLC patients with EGFR-TKI-sensitive genetic mutations by National Medical Products Administration (NMPA) in 2021.The purpose of this study was to establish and validate a fast, accurate, stable and facile ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of almonertinib in rat plasma, it was employed to explore the effect of Paxlovid on the pharmacokinetics of almonertinib in rats. Zanubrutinib was used as an internal standard (IS), and the plasma samples were prepared by the protein precipitation method using acetonitrile. Chromatographic separation was carried out on a Shimadzu LC-20AT ultra-performance liquid chromatography system using a Shim-pack velox C18 (2.1× 50 mm, 2.7 µM) column. The mobile phase consisted of methanol and 0.1% formic acid-water. Mass spectrum analysis was executed using Shimadzu 8040 Triple quadrupole mass spectrometry. The precursor and product ions of the analyte and internal standard were detected in multiple reaction monitoring (MRM) mode. The typical fragment ions were m/z 526.20 → 72.10 for almonertinib and m/z 472.15 → 290.00 for zanubrutinib (IS). The method was validated to have good linearity for quantifying almonertinib in rat plasma from 0.1-1000 ng/ml (R2 = 0.999), and the LLOQ was 0.1 ng/ml. The validity of this method was sufficiently verified for selectivity, specificity, extraction recovery, matrix effect, accuracy, precision and stability. The validated UHPLC-MS/MS method was successfully applied to the drug interaction study of almonertinib with Paxlovid in rats. Paxlovid significantly inhibits the metabolism of almonertinib and increased the exposure of almonertinib. This study can help us to understand the metabolic profile of almonertinib better, and further human trials should be conducted to validate the results.

7.
ACS Appl Mater Interfaces ; 6(17): 15329-34, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25111767

RESUMEN

Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.


Asunto(s)
Técnicas Biosensibles/métodos , Membrana Celular/metabolismo , Espacio Extracelular/metabolismo , Colorantes Fluorescentes/metabolismo , Tampones (Química) , Línea Celular Tumoral , Colágeno/farmacología , ADN/química , Geles , Humanos , Concentración de Iones de Hidrógeno , Lípidos/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA