Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(4): 1084-1098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037476

RESUMEN

Beneficial Bacillus subtilis (BS) symbiosis could combat root pathogenesis, but it relies on root-secreted sugars. Understanding the molecular control of sugar flux during colonization would benefit biocontrol applications. The SWEET (Sugar Will Eventually Be Exported Transporter) uniporter regulates microbe-induced sugar secretion from roots; thus, its homologs may modulate sugar distribution upon BS colonization. Quantitative polymerase chain reaction revealed that gene transcripts of SWEET2, but not SWEET16 and 17, were significantly induced in seedling roots after 12 h of BS inoculation. Particularly, SWEET2-ß-glucuronidase fusion proteins accumulated in the apical mature zone where BS abundantly colonized. Yet, enhanced BS colonization in sweet2 mutant roots suggested a specific role for SWEET2 to constrain BS propagation, probably by limiting hexose secretion. By employing yeast one-hybrid screening and ectopic expression in Arabidopsis protoplasts, the transcription factor AHL29 was identified to function as a repressor of SWEET2 expression through the AT-hook motif. Repression occurred despite immunity signals. Additionally, enhanced SWEET2 expression and reduced colonies were specifically detected in roots of BS-colonized ahl29 mutant. Taken together, we propose that BS colonization may activate repression of AHL29 on SWEET2 transcription that would be enhanced by immunity signals, thereby maintaining adequate sugar secretion for a beneficial Bacillus association.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacillus subtilis/metabolismo , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Azúcares/metabolismo
2.
Plant Cell Environ ; 44(1): 20-33, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583877

RESUMEN

Gastrodia elata, a fully mycoheterotrophic orchid without photosynthetic ability, only grows symbiotically with the fungus Armillaria. The mechanism of carbon distribution in this mycoheterotrophy is unknown. We detected high sucrose concentrations in all stages of Gastrodia tubers, suggesting sucrose may be the major sugar transported between fungus and orchid. Thick symplasm-isolated wall interfaces in colonized and adjacent large cells implied involvement of sucrose importers. Two sucrose transporter (SUT)-like genes, GeSUT4 and GeSUT3, were identified that were highly expressed in young Armillaria-colonized tubers. Yeast complementation and isotope tracer experiments confirmed that GeSUT4 functioned as a high-affinity sucrose-specific proton-dependent importer. Plasma-membrane/tonoplast localization of GeSUT4-GFP fusions and high RNA expression of GeSUT4 in symbiotic and large cells indicated that GeSUT4 likely functions in active sucrose transport for intercellular allocation and intracellular homeostasis. Transgenic Arabidopsis overexpressing GeSUT4 had larger leaves but were sensitive to excess sucrose and roots were colonized with fewer mutualistic Bacillus, supporting the role of GeSUT4 in regulating sugar allocation. This is not only the first documented carbon import system in a mycoheterotrophic interaction but also highlights the evolutionary importance of sucrose transporters for regulation of carbon flow in all types of plant-microbe interactions.


Asunto(s)
Gastrodia/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Simbiosis , Arabidopsis , Armillaria/metabolismo , Armillaria/fisiología , Gastrodia/microbiología , Gastrodia/fisiología , Hibridación in Situ , Proteínas de Transporte de Membrana/fisiología , Microscopía Electrónica de Transmisión , Micorrizas/metabolismo , Micorrizas/ultraestructura , Proteínas de Plantas/fisiología , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/ultraestructura , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA