Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rec ; 24(2): e202400008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286635

RESUMEN

In this special issue, we highlight recent advances in chemical research by scientists in Ukraine, as well as by their compatriots and collaborators outside the country. Besides spotlighting their contributions, we see our task in fostering global partnerships and multi-, inter-, and trans-disciplinary collaborations, including much-needed co-funded projects and initiatives. The three decades of the renewed Ukraine independence have seen rather limited integration of Ukrainian (chemical) science into global research communities.[1] At the same time, the recent surge of collaborative science initiatives between European Union (EU) and Ukraine echoes the unfolding steps towards Ukraine's full research participation to the Horizon Europe Program. This recently implemented step opens enormous possibilities for Ukrainian researchers to apply for diverse EU research grants. Moreover, a number of journal special issues and collections were launched to highlight Ukrainian chemistry (i. e., by Chemistry of Heterocyclic Compounds[2] and ChemistrySelect[3] ). Other scientific initiatives include 'European Chemistry School for Ukrainians'[4] and 'Kharkiv Chemical Seminar'[5] as voluntary projects aimed at engaging Ukrainian scientists into European and international chemical research.

2.
Chem Soc Rev ; 52(3): 1156, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36655561

RESUMEN

Correction for 'Toxicity of metal-organic framework nanoparticles: from essential analyses to potential applications' by Romy Ettlinger et al., Chem. Soc. Rev., 2022, 51, 464-484, https://doi.org/10.1039/D1CS00918D.

3.
Angew Chem Int Ed Engl ; 63(29): e202406110, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711195

RESUMEN

The ability to finely tune/balance the structure and rigidity of enzymes to realize both high enzymatic activity and long-term stability is highly desired but highly challenging. Herein, we propose the concept of the "silicazyme", where solid inorganic silica undergoes controlled hybridization with the fragile enzyme under moderate conditions at the single-enzyme level, thus enabling simultaneous structure augmentation, long-term stability, and high enzymatic activity preservation. A multivariate silicification approach was utilized and occurred around individual enzymes to allow conformal coating. To realize a high activity-stability trade-off the structure flexibility/rigidity of the silicazyme was optimized by a component adjustment ternary (CAT) plot method. Moreover, the multivariate organosilica frameworks bring great advantages, including surface microenvironment adjustability, reversible modification capability, and functional extensibility through the rich chemistry of silica. Overall silicazymes represent a new class of enzymes with promise for catalysis, separations, and nanomedicine.


Asunto(s)
Dióxido de Silicio , Dióxido de Silicio/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
4.
J Am Chem Soc ; 145(26): 14324-14334, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37353221

RESUMEN

Metal-organic frameworks (MOFs) have emerged as a class of porous materials with facile uptake and release of water, turning them into excellent substrates for real-world atmospheric water harvesting applications. The performance of different MOF systems was experimentally characterized at the bulk level by assessing the total amount of water taken up and the release kinetics, leaving the question behind of what the upper limit of the pristine materials actually is. Moreover, recent devices rely on fluidized bed reactors that exploit the harvesting capacities of MOFs at the single-crystal (SC) level. In this publication, we present a novel methodology based on Raman spectroscopy, for acquiring water adsorption isotherms and kinetic curves with a sub-micrometer resolution that provides valuable insights into the material behavior probing the pristine MOF at the SC level. We investigated isolated MOF-801 particles in situ and could dissect contributions of intra- and inter-particle effects on the water harvesting performance of MOF-801 via adsorption-desorption isotherms and kinetic curves. Using spontaneous Raman spectroscopy, we found an almost 20-fold faster uptake for the undisturbed crystalline material. Correlative imaging based on four-wave mixing and coherent anti-Stokes Raman scattering further localized the uptaken water inside MOF-801 and identified inter-particle condensation as the main source for the discrepancies between the performance at the bulk and SC level. Our studies determined an upper limit of around 91.9 L/kgMOF/day for MOF-801.

5.
Chemistry ; 29(9): e202202913, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36377879

RESUMEN

Peptides containing variations of the ß-amyloid hydrophobic core and five-membered sulfamidates derived from ß-amino acid α-methylisoserine have been synthesized and fully characterized in the gas phase, solid state and in aqueous solution by a combination of experimental and computational techniques. The cyclic sulfamidate group effectively locks the secondary structure at the N-terminus of such hybrid peptides imposing a conformational restriction and stabilizing non-extended structures. This conformational bias, which is maintained in the gas phase, solid state and aqueous solution, is shown to be resistant to structure templating through assays of in vitro ß-amyloid aggregation, acting as ß-sheet breaker peptides with moderate activity.


Asunto(s)
Aminoácidos , Péptidos beta-Amiloides , Conformación Proteica en Lámina beta , Péptidos beta-Amiloides/química , Estructura Secundaria de Proteína
6.
Chem Soc Rev ; 51(7): 2544-2582, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35262108

RESUMEN

Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Humanos , Inmunoterapia , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico
7.
Chem Soc Rev ; 51(2): 464-484, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34985082

RESUMEN

In the last two decades, the field of metal-organic frameworks (MOFs) has exploded, and MOF nanoparticles in particular are being investigated with increasing interest for various applications, including gas storage and separation, water harvesting, catalysis, energy conversion and storage, sensing, diagnosis, therapy, and theranostics. To further pave their way into real-world applications, and to push the synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', this tutorial review aims to shed light on the importance of a systematic toxicity assessment. After clarifying and working out the most important terms and aspects from the field of nanotoxicity, the current state-of-the-art of in vitro and in vivo toxicity studies of MOF nanoparticles is evaluated. Moreover, the key aspects affecting the toxicity of MOF nanoparticles such as their chemical composition, their physico-chemical properties, including their colloidal and chemical stability, are discussed. We highlight the need of more targeted synthesis of MOF nanoparticles that are 'safe-and-sustainable-by-design', and their tailored hazard assessment in the context of their potential applications in order to tap the full potential of this versatile material class in the future.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Catálisis , Estructuras Metalorgánicas/toxicidad , Nanopartículas/toxicidad
8.
Angew Chem Int Ed Engl ; 62(22): e202217374, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988087

RESUMEN

To increase the red blood cell (RBC) cryopreservation efficiency by metal-organic frameworks (MOFs), a dimensional reduction approach has been proposed. Namely, 3D MOF nanoparticles are progressively reduced to 2D ultra-thin metal-organic layers (MOLs). We found that 2D MOLs are beneficial for enhanced interactions of the interfacial hydrogen-bonded water network and increased utilization of inner ordered structures, due to the higher surface-to-volume ratio. Specifically, a series of hafnium (Hf)-based 2D MOLs with different thicknesses (monolayer to stacked multilayers) and densities of hydrogen bonding sites have been synthesized. Both ice recrystallization inhibition activity (IRI) and RBCs cryopreservation assay confirm the pronounced better IRI activity and excellent cell recovery efficiency (up to ≈63 % at a very low concentration of 0.7 mg mL-1 ) of thin-layered Hf-MOLs compared to their 3D counterparts, thereby verifying the dimensional reduction strategy to improved cryoprotectant behaviors.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Criopreservación/métodos , Crioprotectores/farmacología , Crioprotectores/química , Hielo , Hafnio/química , Eritrocitos
9.
J Am Chem Soc ; 144(21): 9443-9450, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603745

RESUMEN

Efficient transfection of therapeutic agents and timely potency testing are two key factors hindering the development of cellular therapy. Here we present a cellular-nanoporation and exosome assessment device, a quantitative platform for nanochannel-based cell electroporation and exosome-based in situ RNA expression analysis. In its application to transfection of anti-miRNAs and/or chemotherapeutics into cells, we have systematically described the differences in RNA expression in secreted exosomes and assessed cellular therapies in real time.


Asunto(s)
Exosomas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Transfección
10.
J Am Chem Soc ; 144(17): 7531-7550, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35389641

RESUMEN

The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.


Asunto(s)
Estructuras Metalorgánicas , Nanotecnología , Catálisis , Estructuras Metalorgánicas/química
11.
Angew Chem Int Ed Engl ; 61(19): e202200242, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35104033

RESUMEN

Despite rapid progress in the field of metal-organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web-tool on https://mof-synthesis.aimat.science.


Asunto(s)
Estructuras Metalorgánicas , Minería de Datos , Humanos , Aprendizaje Automático , Estructuras Metalorgánicas/química
12.
Angew Chem Int Ed Engl ; 61(14): e202117261, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35104379

RESUMEN

The discovery of a universal memory that exhibits fast access speed, high-density storage, and non-volatility has fuelled research into phase-change materials over the past decades. In spite of the efficiency of the inorganic chalcogenides for phase-change random access memory (PCRAM), they still have some inherent drawbacks, such as high temperature required for phase change and difficulty to control the domain size of the phase change, because of their brittleness. Here we present a AuI -thiolate coordination polymer which undergoes two successive phase changes on application of mild heating (<200 °C) from amorphous-to-crystalline1-to-crystalline2 phases. These transitions are reversible upon soft hand grinding. More importantly, each phase exhibits different photoluminescent properties for an efficient optical read-out. We believe that the ability of the AuI -thiolate coordination polymer to have reversible phase changes under soft conditions and at the same time to display distinct optical signals, can pave the way for the next generation of PCRAM.

13.
J Am Chem Soc ; 143(28): 10541-10546, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34228932

RESUMEN

In metal-organic frameworks (MOFs), organic linkers are subject to postsynthetic exchange (PSE) when new linkers reach sites of PSE by diffusion. Here, we show that during PSE, a bulky organic linker is able to penetrate narrow-window MOF crystals. The bulky linker migrates by continuously replacing the linkers gating the otherwise impassable windows and serially occupying an array of backbone sites, a mechanism we term through-backbone diffusion. A necessary consequence of this process is the accumulation of missing-linker defects along the diffusion trajectories. Using fluorescence intensity and lifetime imaging microscopy, we found a gradient of missing-linker defects from the crystal surface to the interior, consistent with the spatial progression of PSE. Our success in incorporating bulky functional groups via PSE extends the scope of MOFs that can be used to host sizable, sophisticated guest species, including large catalysts or biomolecules, which were previously deemed only incorporable into MOFs of very large windows.

14.
Chem Soc Rev ; 49(11): 3348-3422, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32249855

RESUMEN

Owing to their large ratio of surface area to mass and volume, metal-organic frameworks and porous carbons have revolutionized many applications that rely on chemical and physical interactions at surfaces. However, a major challenge today is to shape these porous materials to translate their enhanced performance from the laboratory into macroscopic real-world applications. In this review, we give a comprehensive overview of how the precise morphology control of metal oxides can be transferred to metal-organic frameworks and porous carbon materials. As such, tailored material structures can be designed in 0D, 1D, 2D, and 3D with considerable implications for applications such as in energy storage, catalysis and nanomedicine. Therefore, we predict that major research advances in morphology control of metal-organic frameworks and porous carbons will facilitate the use of these materials in addressing major needs of the society, especially the grand challenges of energy, health, and environment.

15.
Angew Chem Int Ed Engl ; 60(45): 23975-24001, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33989445

RESUMEN

The amalgamation of different disciplines is at the heart of reticular chemistry and has broadened the boundaries of chemistry by opening up an infinite space of chemical composition, structure, and material properties. Reticular design has enabled the precise prediction of crystalline framework structures, tunability of chemical composition, incorporation of various functionalities onto the framework backbone, and as a consequence, fine-tuning of metal-organic framework (MOF) and covalent organic framework (COF) properties beyond that of any other material class. Leveraging the unique properties of reticular materials has resulted in significant advances from both a fundamental and an applied perspective. Here, we wish to review the milestones in MOF and COF research and give a critical view on progress in their real-world applications. Finally, we briefly discuss the major challenges in the field that need to be addressed to pave the way for industrial applications.

16.
Angew Chem Int Ed Engl ; 60(45): 23946-23974, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33783111

RESUMEN

At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized, and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.

17.
Angew Chem Int Ed Engl ; 59(50): 22350-22370, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449245

RESUMEN

Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.

18.
J Am Chem Soc ; 141(19): 7789-7796, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31017405

RESUMEN

The development of hybrid nanomaterials mimicking antifreeze proteins that can modulate/inhibit the growth of ice crystals for cell/tissue cryopreservation has attracted increasing interests. Herein, we describe the first utilization of zirconium (Zr)-based metal-organic framework (MOF) nanoparticles (NPs) with well-defined surface chemistries for the cryopreservation of red blood cells (RBCs) without the need of any (toxic) organic solvents. Distinguishing features of this cryoprotective approach include the exceptional water stability, low hemolytic activity, and the long periodic arrangement of organic linkers on the surface of MOF NPs, which provide a precise spacing of hydrogen donors to recognize and match the ice crystal planes. Five kinds of Zr-based MOF NPs, with different pore size, surface chemistry, and framework topologies, were used for the cryoprotection of RBCs. A "splat" assay confirmed that MOF NPs not only exhibited ice recrystallization inhibition activities but also acted as a "catalyst" to accelerate the melting of ice crystals. The human RBC cryopreservation tests displayed RBC recoveries of up to ∼40%, which is higher than that obtained via commonly used hydroxyethyl starch polymers. This cryopreservation approach will inspire the design and utilization of MOF-derived nanoarchitectures for the effective cryopreservation of various cell types as well as tissue samples.


Asunto(s)
Criopreservación/métodos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Nanopartículas/química , Hemólisis/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie , Circonio/química
19.
Chemistry ; 25(25): 6349-6354, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30834605

RESUMEN

The synthesis and characterization of a chemiluminescent metal-organic framework with high porosity is reported. It consists of Zr6 O6 (OH)4 nodes connected by 4,4'-(anthracene-9,10-diyl)dibenzoate as the linker and luminophore. It shows the topology known for UiO-66 and is therefore denoted PAP-UiO. The MOF was not only obtained as bulk material but also as a thin film. Exposure of PAP-UiO as bulk or film to a mixture of bis-(2,4,6-trichlorophenyl) oxalate, hydrogen peroxide, and sodium salicylate in a mixture of dimethyl and dibutyl phthalate evoked strong and long lasting chemiluminescence of the PAP-UiO crystals. Time dependent fluorescence spectroscopy on bulk PAP-UiO and, for comparison, on dimethyl 4,4'-(anthracene-9,10-diyl)dibenzoate provided evidence that the chemiluminescence originates from luminophores being part of the PAP-UiO, including the luminophores inside the crystals.

20.
J Am Chem Soc ; 140(14): 4812-4819, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29542320

RESUMEN

Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA