Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768263

RESUMEN

Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the rewarding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9) and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor expression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitization, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent male rats.


Asunto(s)
Miedo , N-Metilaspartato , Animales , Masculino , Ratas , Extinción Psicológica , Metaloproteinasa 9 de la Matriz/metabolismo , N-Metilaspartato/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240392

RESUMEN

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos , Roedores , Ratas , Masculino , Ratones , Animales , Ligandos , Dolor/tratamiento farmacológico , Receptores de Cannabinoides , Dronabinol/farmacología , Receptor Cannabinoide CB1 , Relación Dosis-Respuesta a Droga , Receptores Acoplados a Proteínas G
3.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751823

RESUMEN

Cocaine-induced plasticity in the glutamatergic transmission and its N-methyl-d-aspartate (NMDA) receptors are critically involved in the development of substance use disorder. The presynaptic active zone proteins control structural synaptic plasticity; however, we are still far from understanding the molecular determinants important for cocaine seeking behavior. The aim of this study was to investigate the effect of cocaine self-administration and different conditions of cocaine forced abstinence on the composition of the NMDA receptor subunits and on the levels of active zone proteins, i.e., Ras-related protein 3A (Rab3A), Rab3 interacting molecules 1 (RIM1) and mammalian uncoordinated protein 13 (Munc13) in the rat nucleus accumbens. We found an up-regulation of the accumbal levels of GluN1 and GluN2A following cocaine self-administration that was paralleled by an increase of Munc13 and RIM1 levels. At the same time, we also demonstrated that different conditions of cocaine abstinence abolished changes in NMDA receptor subunits (except for higher GluN1 levels after cocaine abstinence with extinction training), while an increase in the Munc13 concentration was shown in rats housed in an enriched environment. In conclusion, cocaine self-administration is associated with the specific up-regulation of the NMDA receptor subunit composition and is related with new presynaptic targets controlling neurotransmitter release. Moreover, changes observed in cocaine abstinence with extinction training and in an enriched environment in the levels of NMDA receptor subunit and in the active zone protein, respectively, may represent a potential regulatory step in cocaine-seeking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Proteínas de Unión al GTP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Comportamiento de Búsqueda de Drogas , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Autoadministración , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816953

RESUMEN

It was previously demonstrated that rat adenosine A2AR transmembrane V peptide administration into the nucleus accumbens enhances cocaine self-administration through disruption of the A2AR-dopamine (D2R) heteroreceptor complex of this region. Unlike human A2AR transmembrane 4 (TM4) and 5 (TM5), A2AR TM2 did not interfere with the formation of the A2AR-D2R heteroreceptor complex in cellular models using BRET1 assay. A2AR TM2 was proposed to be part of the of the receptor interface of the A2AR homomer instead and was therefore tested in the current article for effects on rat cocaine self-administration using rat A2AR synthetic TM2 peptide bilaterally injected into the nucleus accumbens. The injected A2AR TM2 peptide failed to significantly counteract the inhibitory action of the A2AR agonist CGS 21680 (0.1 mg/Kg) on cocaine self-administration. In line with these results, the microinjected A2AR TM2 peptide did not reduce the number of proximity ligation assay blobs identifying A2AR-D2R heteroreceptor complexes in the nucleus accumbens. In contrast, the A2AR TM2 peptide significantly reduced the number of A2AR-A2AR homoreceptor complexes in the nucleus accumbens. As to effects on the receptor-receptor interactions in the A2AR-D2R heteroreceptor complexes, the A2AR TM2 peptide did not alter the significant increase in the D2R Ki, high values produced by the A2AR agonist CGS 21680 ex vivo in the ventral striatum. The results indicate that the accumbal A2AR-A2AR homomeric complexes are not involved in mediating the A2AR agonist-induced inhibition of cocaine self-administration.


Asunto(s)
Membrana Celular/química , Cocaína/administración & dosificación , Péptidos/administración & dosificación , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Autoadministración , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Masculino , Microinyecciones , Modelos Moleculares , Núcleo Accumbens/efectos de los fármacos , Fenetilaminas/farmacología , Multimerización de Proteína/efectos de los fármacos , Quinpirol/farmacología , Racloprida/farmacología , Ratas Sprague-Dawley
5.
J Pharmacol Exp Ther ; 366(3): 519-526, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29921706

RESUMEN

Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.


Asunto(s)
Trastornos Mentales/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Conducta , Humanos
6.
Hippocampus ; 27(7): 811-821, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28422379

RESUMEN

Drug craving and relapse risk during abstinence from cocaine are thought to be caused by persistent changes in transcription and chromatin regulation. Although several brain regions are involved in these processes, the hippocampus seems to play an important role in context-evoked craving and drug-seeking behavior. Only a few studies have examined epigenetic alterations during a period of cocaine abstinence. To investigate the effects of cocaine abstinence on DNA methylation and gene expression, rats that self-administered the drug underwent cocaine abstinence in two time points with extinction training. During the cocaine extinction, we observed elevated global 5-hydroxymethylcytosine(5-hmC) levels with a concurrent increase in Tet3 transcript levels. Moreover, we did not find significant alterations in the levels of Tet3 mRNA and 5-hmC in rats subjected to cocaine abstinence without extinction training. Additionally, our findings demonstrated that the expression of Tet3 target genes was activated. Besides, altered DNA methylation was detected at promoter regions of miRNAs, such as miR-30d and miR-let7i. Further in silico analysis provided evidence that these two molecules targeted the 3' UTR region of the Tet3 gene and thus may contribute to its post-transcriptional regulation. This study has presented novel findings in the hippocampus of rats that underwent extinction training following cocaine self-administration. The alterations in the Tet3 gene expression and the level of 5-hmC may play an important role in extinction learning and the reduction of subsequent cocaine seeking.


Asunto(s)
5-Metilcitosina/análogos & derivados , Trastornos Relacionados con Cocaína/metabolismo , Hipocampo/metabolismo , 5-Metilcitosina/metabolismo , Animales , Trastornos Relacionados con Cocaína/genética , Metilación de ADN , Dioxigenasas/biosíntesis , Dioxigenasas/genética , Extinción Psicológica , Regulación de la Expresión Génica/fisiología , Masculino , Ratas , Ratas Wistar
7.
Neural Plast ; 2016: 4827268, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872762

RESUMEN

Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.


Asunto(s)
Ganglios Basales/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Ganglios Basales/efectos de los fármacos , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Humanos , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Agonistas del Receptor Purinérgico P1/farmacología , Agonistas del Receptor Purinérgico P1/uso terapéutico , Autoadministración
8.
J Neurochem ; 134(4): 704-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26031442

RESUMEN

We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5-HT, serotonin; 5-HT2A R, 5-HT2A receptor; 5-HT2C R, 5-HT2C receptor.


Asunto(s)
Encéfalo/metabolismo , Nicotina/efectos adversos , Receptor de Serotonina 5-HT2A/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Encéfalo/efectos de los fármacos , Inmovilización/psicología , Masculino , Nicotina/administración & dosificación , Ratas , Ratas Wistar , Síndrome de Abstinencia a Sustancias/psicología
9.
Addict Biol ; 18(2): 307-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23311632

RESUMEN

We investigated the changes in dopamine (DA), glutamate and γ-aminobutyric acid (GABA) during cocaine self-administration in rats implanted with guide cannulae into the nucleus accumbens and ventral pallidum. After stabilized cocaine self-administration, separate groups of rats underwent extinction (10 days) procedure in which cocaine infusion was replaced by saline injections. With using a 'yoked' procedure, the effects of cocaine or its withdrawal on the level of neurotransmitters were evaluated by dual-probe microdialysis. Repeated cocaine administration reduced basal glutamate levels in the nucleus accumbens and ventral pallidum, whereas it did not affect basal accumbal DA levels. Only rats that self-administered cocaine had increased basal GABA overflow in both examined brain structures. Active or passive cocaine administration elevated extracellular accumbal DA, however, the extent of cocaine-evoked DA level was significantly higher in rats that self-administered cocaine while both groups of animals showed also an attenuation of GABA level in the nucleus accumbens. On day 10 of extinction training, rats previously given cocaine revealed decreases in the basal accumbal concentration of glutamate while the basal GABA levels were significantly enhanced as compared with baseline of saline-yoked controls. Potassium depolarization delayed the reduction of the accumbal and pallidal extracellular glutamate levels in the active and passive cocaine groups. The present data indicate that changes in DA and GABA neurotransmission during maintenance phase mirror the motivational aspects of cocaine intake. Depending on acute (24 hours) or late (10 days) cocaine withdrawal, different neurotransmitter systems (i.e. glutamate or GABA) seem to be involved.


Asunto(s)
Ganglios Basales/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Glutamatos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Ganglios Basales/efectos de los fármacos , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Líquido Extracelular/metabolismo , Masculino , Microdiálisis/métodos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Cloruro de Potasio/administración & dosificación , Cloruro de Potasio/farmacología , Ratas , Ratas Wistar , Refuerzo en Psicología , Autoadministración , Cloruro de Sodio/administración & dosificación , Síndrome de Abstinencia a Sustancias/metabolismo , Factores de Tiempo
10.
Biomolecules ; 13(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759811

RESUMEN

BACKGROUND: Cocaine use disorder (CUD) is a relapsing brain disease caused by a chronic drug intake that involves neural mechanisms and psychological processes, including depression. Preclinical and clinical studies have demonstrated the promise of pharmacological drugs in controlling the reinstatement of cocaine by targeting the N-methyl-D-aspartate (NMDA) receptor. Recent evidence has revealed that esketamine, a (S) enantiomer of ketamine, shows a high affinity to NMDA receptors and has been used in clinical trials to treat moderate-to-severe depression. METHODS: In the present paper, we investigated the effects of esketamine in regulating cocaine-seeking behaviour induced through the use of cocaine (10 mg/kg) or the cocaine-associated conditioned cue after a short (10 days)-lasting period of drug abstinence with extinction training, home cage or enrichment environment conditions in male rats. Furthermore, we investigated the acute effects of esketamine on locomotor activity in drug-naïve animals. RESULTS: Esketamine (2.5-10 mg/kg) administered peripherally attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue after different conditions of abstinence. CONCLUSIONS: These results seem to support esketamine as a candidate for the pharmacological management of cocaine-seeking and relapse prevention; however, further preclinical and clinical research is needed to better clarify esketamine's actions in CUD.

11.
Front Nutr ; 10: 1176213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229474

RESUMEN

Anxiety and depression are the most common mental disorders affecting people worldwide. Recent studies have highlighted that a maternal high-sugar diet (HSD) could be a risk factor for neurobehavioural dysregulations, including mood disorders. Increased consumption of added sugar in food such as refined fructose/glucose can increase the risk of metabolic disorders and impact susceptibility to mental disorders. Furthermore, a few papers have reported disabilities in learning and memory among offspring after maternal HSD, thus suggesting a relationship between maternal nutrition and offspring neurogenesis. In this study, we evaluated the impact of maternal monosaccharide consumption based on a glucose (GLU) or fructose (FRU) diet during pregnancy and lactation in adolescent and young adult offspring rats of both sexes on cognitive, locomotor, and emotional disturbances. Locomotor activity, short-term memory, anxiety-like and depressive-like behavior were evaluated in the offspring. We report for the first time that the maternal GLU or FRU diet is sufficient to evoke anxiety-like behavior among adolescent and young adult offspring. Moreover, we found that maternal monosaccharide diets lead to hyperactivity and depressive-like behavior in male adolescent rats. We also noticed that a maternal FRU diet significantly enhanced novelty-seeking behavior only in young adult male rats. Our novel findings indicated that the maternal monosaccharide diet, especially a diet enriched in FRU, resulted in strong behavioral alterations in offspring rats at early life stages. This study also revealed that male rats were more susceptible to hyperactivity and anxiety- and depressive-like phenotypes than female rats. These results suggest that maternal monosaccharide consumption during pregnancy and lactation is an important factor affecting the emotional status of offspring.

12.
Nutrients ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36986191

RESUMEN

Obesity is a substantial health and economic issue, and serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter system involved in the regulation of body weight. The 5-HT2C receptors (5-HT2CRs), one of 16 of the 5-HT receptor (5-HTRs) subtypes, play a significant role in food intake and body weight control. In this review, we focused on the 5-HTR agonists, such as fenfluramines, sibutramine, and lorcaserin, which act directly or indirectly at 5-HT2CRs and have been introduced into the clinic as antiobesity medications. Due to their unwanted effects, they were withdrawn from the market. The 5-HT2CR positive allosteric modulators (PAMs) can be potentially safer active drugs than 5-HT2CR agonists. However, more in vivo validation of PAMs is required to fully determine if these drugs will be effective in obesity prevention and antiobesity pharmacology treatment. Methodology strategy: This review focuses on the role of 5-HT2CR agonism in obesity treatment, such as food intake regulation and weight gain. The literature was reviewed according to the review topic. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open-access scientific journals using the following keyword search strategy depending on the chapter phrases: (1) "5-HT2C receptor" AND "food intake", and (2) "5-HT2C receptor" AND "obesity" AND "respective agonists", and (3) "5-HT2C receptor" AND "PAM". We included preclinical studies (only present the weight loss effects) and double-blind, placebo-controlled, randomized clinical trials published since the 1975s (mostly related to antiobesity treatment), and excluded the pay-walled articles. After the search process, the authors selected, carefully screened, and reviewed appropriate papers. In total, 136 articles were included in this review.


Asunto(s)
Fármacos Antiobesidad , Serotonina , Humanos , Serotonina/farmacología , Obesidad/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Regulación del Apetito , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
Front Mol Neurosci ; 16: 1106765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293542

RESUMEN

Previous studies have indicated that acute treatment with the monoamine stabilizer OSU-6162 (5 mg/kg), which has a high affinity for Sigma1R, significantly increased the density of accumbal shell D2R-Sigma1R and A2AR-D2R heteroreceptor complexes following cocaine self-administration. Ex vivo studies using the A2AR agonist CGS21680 also suggested the existence of enhanced antagonistic accumbal A2AR-D2R allosteric interactions after treatment with OSU-6162 during cocaine self-administration. However, a 3-day treatment with OSU-6162 (5 mg/kg) failed to alter the behavioral effects of cocaine self-administration. To test these results and the relevance of OSU-6162 (2.5 mg/kg) and/or A2AR (0.05 mg/kg) agonist interactions, we administered low doses of receptor agonists during cocaine self-administration and assessed their neurochemical and behavioral effects. No effects were observed on cocaine self-administration; however, marked and highly significant increases using the proximity ligation assay (PLA) were induced by the co-treatment on the density of the A2AR-D2R heterocomplexes in the nucleus accumbens shell. Significant decreases in the affinity of the D2R high- and low-affinity agonist binding sites were also observed. Thus, in low doses, the highly significant neurochemical effects observed upon cotreatment with an A2AR agonist and a Sigma1R ligand on the A2AR-D2R heterocomplexes and their enhancement of allosteric inhibition of D2R high-affinity binding are not linked to the modulation of cocaine self-administration. The explanation may be related to an increased release of ATP and adenosine from astrocytes in the nucleus accumbens shell in cocaine self-administration. This can lead to increased activation of the A1R protomer in a putative A1R-A2AR-D2R complex that modulates glutamate release in the presynaptic glutamate synapse. We hypothesized that the integration of changes in presynaptic glutamate release and postjunctional heteroreceptor complex signaling, where D2R plays a key role, result in no changes in the firing of the GABA anti-reward neurons, resulting in no reduction in cocaine self-administration in the present experiments.

14.
Nutrients ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889898

RESUMEN

Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.


Asunto(s)
Trastornos Relacionados con Sustancias , Adulto , Niño , Dieta , Comida Rápida , Femenino , Fructosa , Glucosa , Humanos , Conducta Impulsiva , Embarazo
15.
Br J Pharmacol ; 179(17): 4233-4253, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33963539

RESUMEN

Drug addiction is a devastating disorder with a huge economic and social burden for modern society. Although an individual may slip into drug abuse throughout his/her life, adolescents are at higher risk, but, so far, only a few studies have attempted to elucidate the underlying cellular and molecular bases of such vulnerability. Indeed, preclinical evidence indicates that psychostimulants and adolescence interact and contribute to promoting a dysfunctional brain. In this review, we have focused our attention primarily on changes in neuroplasticity brought about by cocaine, taking into account that there is much less evidence from exposure to cocaine in adolescence, compared with that from adults. This review clearly shows that exposure to cocaine during adolescence, acute or chronic, as well as contingent or non-contingent, confers a vulnerable endophenotype, primarily, by causing changes in neuroplasticity. Given the close relationship between drug abuse and psychiatric disorders, we also discuss the translational implications providing an interpretative framework for clinical studies involving addictive as well as affective or psychotic behaviours. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Asunto(s)
Cocaína , Trastornos Mentales , Adolescente , Cocaína/efectos adversos , Femenino , Humanos , Masculino , Modelos Teóricos , Plasticidad Neuronal
16.
Pharmacol Biochem Behav ; 215: 173375, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307414

RESUMEN

Neurochemical studies were previously performed on the effects of a 10 day extinction learning from cocaine self-administration on D2R and A2AR recognition and D2R Gi/o coupling in the ventral striatum. In the present study biochemical receptor binding and proximity ligation assay were used to study possible changes in the allosteric receptor-receptor interactions and the density of the A2AR-D2R heterocomplexes in the ventral striatum (nucleus accumbens shell) in extinction from cocaine self-administration including cue induced reinstatement of cocaine seeking. A significant and clear-cut reduction of active lever pressing was observed in extinction on day 10 from cocaine use. In cue induced reinstatement of cocaine self-administration a significant return in active lever presses developed. In extinction, significant increases in the density of A2AR-D2R and D2R-Sigma1R heterocomplexes were observed in nucleus accumbens shell. In contrast, cue-induced reinstatement of cocaine seeking produced no significant changes in these heteroreceptor complexes of the nucleus accumbens shell. In the 3H raclopride/quinpirole competition binding experiments, the extinction led to a significant increase in the D2R Ki, High dissociation constant in the ventral striatum upon ex vivo exposure to CGS 21680 (100 nM), compared to the same exposure performed in membrane preparations from yoked saline rats. No significant changes in D2R Ki, High values were observed in membrane preparations from rats after cue-induced reinstatement of cocaine-seeking undergoing the same exposure ex vivo to CGS 21680 when compared with membrane preparations from yoked saline rats undergoing the same procedures. It seems likely that increased formation of A2AR-D2R and putative A2AR-D2R-Sigma1R heterocomplexes in the nucleus accumbens shell is part of the mechanism for the enhanced antagonistic allosteric A2AR-D2R interactions developed in extinction learning from cocaine. It reduces cocaine reward through reduced D2R function, and these inhibitory mechanisms are no longer in operation in cue induced reinstatement of cocaine seeking.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/metabolismo , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Señales (Psicología) , Extinción Psicológica , Núcleo Accumbens/metabolismo , Ratas , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Autoadministración
17.
Behav Brain Res ; 416: 113537, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34416299

RESUMEN

Cocaine use disorder is a serious, chronic and relapsing disease of the nervous system, for which effective treatments do not yet exist. Recently, the role of the N-methyl-d-aspartate (NMDA) receptor subunit GluN2B has been highlighted in cocaine abstinence followed by extinction training. Since the GluN2B subunit is stabilized at synaptic level by the interaction with its scaffolding protein PSD95, in this study we aimed at investigating efficacy of Tat-NR2B9c peptide, a PSD95 inhibitor, which disrupts the interaction of PSD95 with GluN2B, in the attenuation of cocaine seeking-behavior or cue-induced reinstatement. We found that Tat-NR2B9c, administered intravenously, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli. At the same time, the GluN2B/PSD95 complex levels were decreased in the ventral hippocampus of rats that previously self-administered cocaine injected with Tat-NR2B9c during cocaine- or cue-induced reinstatement. In conclusion, we here provide the first evidence showing that the disruption of the GluN2B/PSD95 complexes during cocaine abstinence followed by extinction training may represent a useful strategy to reduce reinstatement of cocaine-seeking behavior.


Asunto(s)
Cocaína/farmacología , Comportamiento de Búsqueda de Drogas , Extinción Psicológica/fisiología , Péptidos/antagonistas & inhibidores , Autoadministración , Administración Intravenosa , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Señales (Psicología) , Homólogo 4 de la Proteína Discs Large/metabolismo , Masculino , Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley
18.
J Psychopharmacol ; 35(10): 1226-1239, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34587833

RESUMEN

BACKGROUND: Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. METHODS: The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit-CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. RESULTS: In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. CONCLUSION: In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/administración & dosificación , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Encéfalo/metabolismo , Señales (Psicología) , Relación Dosis-Respuesta a Droga , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Piperidinas/administración & dosificación , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Autoadministración
19.
Artículo en Inglés | MEDLINE | ID: mdl-33485963

RESUMEN

Cocaine use disorder develops in part due to the strong associations formed between drugs and the stimuli associated with drug use. Recently, treatment strategies including manipulations of drug-associated memories have been investigated, and the possibility of interfering with N-methyl-d-aspartate (NMDA)-mediated neurotransmission may represent an important option. The aim of this study was to examine the significance of the NMDA receptor subunit GluN2B at the molecular level (the expression of the GluN2B subunit, the Grin2B gene and the association of GluN2B with postsynaptic density protein 95 (PSD95)) in the brain structures of rats with a history of cocaine self-administration after i) cocaine abstinence with extinction training or ii) cocaine abstinence without instrumental tasks, as well as at the pharmacological level (peripheral or intracranial administration of CP 101,606, a GluN2B subunit antagonist during the cocaine- or cue-induced reinstatement). The GluN2B subunit levels and the GluN2B/PSD95 complex levels were either increased in the ventral hippocampus (vHIP) with higher levels of Grin2B gene expression in the HIP or decreased in the dorsal striatum (dSTR) after cocaine abstinence with extinction training. Moreover, CP 101,606, a GluN2B subunit antagonist, administered peripherally, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli, while injection into the vHIP reduced the cocaine- or cue with the subthreshold dose of cocaine-induced reinstatement. In cocaine abstinence without instrumental tasks, an increase in the GluN2B subunit levels and the level of the GluN2B/PSD95 complex in the dSTR was observed in rats that had previously self-administered cocaine. In conclusion, cocaine abstinence with extinction training seems to be associated with the up-regulation of the hippocampal GluN2B subunits, which seems to control cocaine-seeking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Masculino , Ratas , Ratas Wistar , Autoadministración
20.
Neurotox Res ; 39(3): 556-565, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33759085

RESUMEN

Different neuronal alterations within glutamatergic system seem to be crucial for developing of cocaine-seeking behavior. Cocaine exposure provokes a modulation of the NMDA receptor subunit expression in rodents, which probably contributes to cocaine-induced behavioral alterations. The aim of this study was to examine the composition of the NMDA receptor subunits in the brain structures in rats with the history of cocaine self-administration after cocaine abstinence (i) in an enriched environment, (ii) in an isolated condition, (iii) with extinction training, or (iv) without instrumental task, as well as the Grin1 (encoding GluN1) and Grin2A (encoding GluN2A) gene expression were evaluated after 10-day extinction training in rat brain structures. In the present study, we observed changes only following cocaine abstinence with extinction training, when the increased GluN2A subunit levels were seen in the postsynaptic density fraction but not in the whole homogenate of the prelimbic cortex (PLC) and dorsal hippocampus (dHIP) in rats previously self-administered cocaine. At the same time, extinction training did not change the Grin1 and Grin2A gene expression in these structures. In conclusion, NMDA receptor subunit modulation observed following cocaine abstinence with extinction training may represent a potential target in cocaine-seeking behavior.


Asunto(s)
Encéfalo/metabolismo , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica/fisiología , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Encéfalo/efectos de los fármacos , Trastornos Relacionados con Cocaína/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Ambiente , Extinción Psicológica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Autoadministración/métodos , Aislamiento Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA