RESUMEN
Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate (IL), an ionic liquid, and Na-montmorillonite (Na-MMT) were studied under different kinetic conditions to investigate the adsorption behavior of IL by Na-MMT. The adsorption of IL by Na-MMT was rapid, with a fast rate, reaching a capacity of 0.43 mmol/g, lower than Na-MMT's cation exchange capacity (CEC) of 0.90 mmol/g. Meanwhile, the highest adsorption rate occurred at the IL concentration of 1000 mg/L. The exchangeable cation of Na-MMT could not be completely substituted by the cation group of IL regardless of the IL concentration. Stoichiometric desorption experiments confirmed that the cation exchange was the dominating adsorption mechanism for the IL adsorption by Na-MMT. The pH value of the solution between 2 and 11 had a negligible effect on the adsorption amount of IL by Na-MMT. The cation group of IL interacted into the interlayer of Na-MMT successfully, resulting in the change in the wettability of Na-MMT. A bilayer formation of the cationic group should occur in the interlayer of the modified Na-MMT and the configuration of IL was dependent on the adsorption amount of IL. Furthermore, the thermal stability of the modified Na-MMT was also dependent on the adsorption amount of IL.
Asunto(s)
Bentonita/química , Líquidos Iónicos/química , Modelos Químicos , Adsorción , CinéticaRESUMEN
The wellbore instability caused by the penetration of drilling fluids into the formation is a vital problem in the drilling process. In this study, we synthesized a polymer/graphene oxide composite (PAAN-G) as a fluid loss additive in water-based drilling fluids. The three monomers (acrylamide (AM), 2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS), N-vinylpyrrolidone (NVP)) and graphene oxide (GO) were copolymerized using aqueous free radical polymerization. The composition, micromorphology, and thermal stability properties of PAAN-G were characterized by Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). According to the American Petroleum Institute (API) standards, the influence of PAAN-G on the rheological and filtration properties of bentonite-based mud was evaluated. Compared with PAAN, PAAN-0.2G has more stable rheological properties at high temperatures. The experimental results showed that even at a high temperature of 240 °C, PAAN-G can still maintain a stable fluid loss reduction ability. In addition, PAAN-G is also suitable for high-salt formations; it can still obtain satisfactory filtration volume when the concentration of sodium chloride (NaCl) and calcium chloride (CaCl2) reached 25 wt %. Besides, we discussed the fluid loss control mechanism of PAAN-G through particle size distribution and scanning electron microscopy (SEM).
RESUMEN
Acrylamide polymers were widely used as oilfield chemical treatment agents because of their wide viscosity range and versatile functions. However, with the increased formation complexity, their shortcomings such as poor solubility and low resistance to temperature, salt, and calcium were gradually exposed. In this paper, acrylamide (AM)/2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS) copolymers were synthesized by aqueous solution polymerization and inverse emulsion polymerization, respectively. The aqueous polymer (W-AM/AMPS) and the inverse emulsion polymer (E-AM/AMPS) were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and particle size analysis. The rheological properties, filtration properties, and sodium ion (Na+) and calcium ion (Ca2+) resistance were investigated. The results showed that E-AM/AMPS not only had a dissolution speed 4 times faster than that of W-AM/AMPS but also had superior shear-thinning performance both before and after aging. The filtration property of the bentonite system containing 2 wt % E-AM/AMPS was also better than that of the bentonite system containing 2 wt % W-AM/AMPS. In addition, E-AM/AMPS also exhibited extremely high tolerance for Na+ and Ca2+. The huge difference between rheological and filtration properties of E-AM/AMPS and W-AM/AMPS in drilling fluid can be attributed to the differences in the polymer microstructure caused by the two polymerization methods. Both FTIR and 1H NMR results showed that more hydrogen bonds were formed between E-AM/AMPS molecular groups and molecular chains, which led to a cross-linked network structure of E-AM/AMPS which was observed by TEM. It was this cross-linked network structure that made E-AM/AMPS have a high viscosity and allowed it to be better adsorbed on bentonite particles, thus exhibiting excellent rheological and filtration behavior. In addition, E-AM/AMPS powder had a high specific surface area so that it can be dissolved in water faster, greatly reducing the time and difficulty of configuring drilling fluid.
RESUMEN
We synthesized a biodegradable and environmentally friendly shale inhibitor based on chitosan-grafted l-arginine (CA) for wellbore stability in shale formation. The structure of CA was characterized by Fourier-transform infrared spectroscopy. Linear swelling, shale hot-rolling recovery, shale inhibition durability, and sedimentation experiments were used to evaluate the inhibition properties of CA and compared with the commonly used inhibitors potassium chloride (KCl) and polyamines (HPA and SIAT). The results showed that the inhibition of CA was better than that of KCl, HPA, and SIAT and that it can have a shale hot-rolling recovery of more than 90% at 150 °C, which indicated that CA had higher temperature resistance and longer durability. More importantly, it can be biodegraded as exhibited by the biodegradibility experiment. The inhibition mechanism of CA was studied by particle size distribution, X-ray diffraction, scanning electron microscopy, zeta potential analysis, and contact angle test. The strong inhibition of CA can be attributed to its encapsulation of MMT and shale surfaces. The CA with strongly positively charge was firmly adsorbed on the surface of MMT and shale, which not only neutralized the negative charge of MMT, compressed the diffused electric double layer, but also increased the contact angle of MMT and shale surface which enhancing hydrophobicity of MMT and shale. The hydration swelling and dispersion of MMT and shale were further inhibited. In addition, compatibility experiments showed that CA was compatible with commonly used treatment agents. CA did not affect the rheology of water-based drilling fluids and can reduce fluid loss after aging.
RESUMEN
The contradiction between the sag stability of weighted materials and the rheological properties of drilling fluids is one of the main technical difficulties in high-density drilling fluids. Thus, understanding the suspension mechanism of weighting materials is the key to improving the sag stability of weighting materials. In this study, micro-manganese (Mn3O4) was compared with the commonly used weighting agent barite to study the suspension mechanism of Mn3O4. The weighting effect of Mn3O4 and barite was evaluated by static and dynamic sag tests, rheological property measurements and filtration property tests. The evaluation experiment results showed that the sag stability of Mn3O4 was better than that of barite, and Mn3O4 could significantly increase the suspension capacity of drilling fluids and improve their rheology property. The scanning electron microscopy (SEM) and other test results indicate that the small and uniform spherical structure of micro-manganese not only causes it to have less friction, but also intense Brownian motion in drilling fluid, which weakens the sag caused by gravity. The large specific surface area of Mn3O4 results in the strong adsorption of water molecules and polymers in drilling fluids, resulting in the formation of a hydrated film on the surface of the Mn3O4 particles and physical crosslinking with polymer chains. This prevents sagging caused by the adsorption of small particles to form large particles. The key findings of this work are expected to provide a basis for improving the sag stability of weighting materials in drilling fluids and better the application of micro-manganese in drilling fluids.