Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cancer ; 19(1): 147, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032611

RESUMEN

BACKGROUND: The highly intra-tumoral heterogeneity and complex cell origination of prostate cancer greatly limits the utility of traditional bulk RNA sequencing in finding better biomarker for disease diagnosis and stratification. Tissue specimens based single-cell RNA sequencing holds great promise for identification of novel biomarkers. However, this technique has yet been used in the study of prostate cancer heterogeneity. METHODS: Cell types and the corresponding marker genes were identified by single-cell RNA sequencing. Malignant states of different clusters were evaluated by copy number variation analysis and differentially expressed genes of pseudo-bulks sequencing. Diagnosis and stratification of prostate cancer was estimated by receiver operating characteristic curves of marker genes. Expression characteristics of marker genes were verified by immunostaining. RESULTS: Fifteen cell groups including three luminal clusters with different expression profiles were identified in prostate cancer tissues. The luminal cluster with the highest copy number variation level and marker genes enriched in prostate cancer-related metabolic processes was considered the malignant cluster. This cluster contained a distinct subgroup with high expression level of prostate cancer biomarkers and a strong distinguishing ability of normal and cancerous prostates across different pathology grading. In addition, we identified another marker gene, Hepsin (HPN), with a 0.930 area under the curve score distinguishing normal tissue from prostate cancer lesion. This finding was further validated by immunostaining of HPN in prostate cancer tissue array. CONCLUSION: Our findings provide a valuable resource for interpreting tumor heterogeneity in prostate cancer, and a novel candidate marker for prostate cancer management.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/patología , Análisis de la Célula Individual/métodos , Humanos , Masculino , Pronóstico , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Curva ROC , Tasa de Supervivencia
2.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315288

RESUMEN

Simple sequence repeats (SSRs) are known as microsatellites, and consist of tandem 1-6-base motifs. They have become one of the most popular molecular markers, and are widely used in molecular ecology, conservation biology, molecular breeding, and many other fields. Previously reported methods identify monomorphic and polymorphic SSRs and determine the polymorphic SSRs via experimental validation, which is potentially time-consuming and costly. Herein, we present a new strategy named insertion/deletion (INDEL) SSR (IDSSR) to identify polymorphic SSRs by integrating SSRs with nucleotide insertions/deletions (INDEL) solely based on a single genome sequence and the sequenced pair-end reads. These INDEL indexes and polymorphic SSRs were identified, as well as the number of repeats, repeat motifs, chromosome location, annealing temperature, and primer sequences, enabling future experimental approaches to determine the correctness and polymorphism. Experimental validation with the giant panda demonstrated that our method has high reliability and stability. The efficient SSR pipeline would help researchers obtain high-quality genetic markers for plants and animals of interest, save labor, and reduce costly marker-screening experiments. IDSSR is freely available at https://github.com/Allsummerking/IDSSR.


Asunto(s)
Técnicas de Genotipaje/métodos , Repeticiones de Microsatélite , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Pollos/genética , Mutación INDEL , Ursidae/genética
3.
Ther Clin Risk Manag ; 20: 47-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344194

RESUMEN

Objective: The objective of this study was to utilize LASSO regression (Least Absolute Shrinkage and Selection Operator Regression) to identify key variables in septic patients and develop a predictive model for intensive care unit (ICU) mortality. Methods: We conducted a cohort consisting of septic patients admitted to the ICU between December 2016 and July 2019. The disease severity and laboratory index were analyzed using LASSO regression. The selected variables were then used to develop a model for predicting ICU mortality. AUCs of ROCs were applied to assess the prediction model, and the accuracy, sensitivity and specificity were calculated. Calibration were also used to assess the actual and predicted values of the predictive model. Results: A total of 1733 septic patients were included, among of whom 382 (22%) died during ICU stay. Ten variables, namely mechanical ventilation (MV) requirement, hemofiltration (HF) requirement, norepinephrine (NE) requirement, septicemia, multiple drug-resistance infection (MDR), thrombocytopenia, hematocrit, red-cell deviation width coefficient of variation (RDW-CV), C-reactive protein (CRP), and antithrombin (AT) III, showed the strongest association with sepsis-related mortality according to LASSO regression. When these variables were combined into a predictive model, the area under the curve (AUC) was found to be 0.801. The AUC of the validation group was 0.791. The specificity of the model was as high as 0.953. Within the probability range of 0.25 to 0.90, the predictive performance of the model surpassed that of individual predictors within the cohort. Conclusion: Our findings suggest that a predictive model incorporating the variables of MV requirement, HF requirement, NE requirement, septicemia, MDR, thrombocytopenia, HCT, RDW-CV, CRP, and AT III exhibiting an 80% likelihood of predicting ICU mortality in sepsis and demonstrates high accuracy.

4.
Front Oncol ; 13: 1038787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814821

RESUMEN

Introduction: Tumorigenesis in breast cancers usually accompanied by the dysregulation of transcription factors (TFs). Abnormal amplification of TFs leads aberrant expression of its downstream target genes. However, breast cancers are heterogeneous disease with different subtypes that have distinguished clinical behaviours, and the identification of prognostic TFs may enable to provide diagnosis and treatment of breast cancer based on subtypes, especially in Basal-like breast cancer. Methods: The RNA-sequencing was performed to screen differential TFs in breast cancer subtypes. The GEPIA dataset analysis was used to analyze the genes expression in invasive breast carcinoma. The expression of MYBL2, HOXC13, and E2F8 was verified by qRT-PCR assay in breast cancers. The depiction analysis of co-expressed proteins was revealed using the STRING datasets. The cellular infiltration level analysis by the TISIDB and TIMER databases. The transwell assay was performed to analyze cellular migration and invasion. CCK-8 assay was used to evaluate cellular drug susceptibility for docetaxel treatment. Predicted targeted drugs in breast cancers by GSCA Lite database online. Results: Kaplan-Meier plotter suggested that high expression of both E2F8 and MYBL2 in Basal-like subtype had a poor relapse-free survival. Functional enrichment results identified that apoptosis, cell cycle, and hormone ER pathway were represented the crucial regulation pathways by both E2F8 and MYBL2. In the meantime, database analysis indicated that high expression of E2F8 responded to chemotherapy, while those patients of high expression of MYBL2 responded to endocrinotherapy, and a positive correlation between the expression of E2F8 and PD-L1/CTLA4. Our cell line experiments confirmed the importance of E2F8 and MYBL2 in proliferation and chemotherapy sensitivity, possibly, the relationship with PD-L1. Additionally, we also observed that the up-regulation of E2F8 was accompanied with higher enrichments of CD4+ T cells and CD8+ T cells in breast cancers. Conclusion: Taken together, our findings elucidated a prospective target in Basal-like breast cancer, providing underlying molecular biomarkers for the development of breast cancer treatment.

5.
Front Immunol ; 14: 1161960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033945

RESUMEN

Background: Although lipid metabolism has been proven to play a key role in the development of cancer, its significance in uveal melanoma (UM) has not yet been elucidated in the available literature. Methods: To identify the expression patterns of lipid metabolism in 80 UM patients from the TCGA database, 47 genes involved in lipid metabolism were analyzed. Consensus clustering revealed two distinct molecular groups. ESTIMATE, TIMER, and ssGSEA analyses were done to identify the differences between the two subgroups in tumor microenvironment (TME) and immune state. Using Cox regression and Lasso regression analysis, a risk model based on differentially expressed genes (DEGs) was developed. To validate the expression of monoacylglycerol lipase (MGLL) and immune infiltration in diverse malignancies, a pan-cancer cohort from the UCSC database was utilized. Next, a single-cell sequencing analysis on UM patients from the GEO data was used to characterize the lipid metabolism in TME and the role of MGLL in UM. Finally, in vitro investigations were utilized to study the involvement of MGLL in UM. Results: Two molecular subgroups of UM patients have considerably varied survival rates. The majority of DEGs between the two subgroups were associated with immune-related pathways. Low immune scores, high tumor purity, a low number of immune infiltrating cells, and a comparatively low immunological state were associated with a more favorable prognosis. An examination of GO and KEGG data demonstrated that the risk model based on genes involved with lipid metabolism can accurately predict survival in patients with UM. It has been demonstrated that MGLL, a crucial gene in this paradigm, promotes the proliferation, invasion, and migration of UM cells. In addition, we discovered that MGLL is strongly expressed in macrophages, specifically M2 macrophages, which may play a function in the M2 polarization of macrophages and M2 macrophage activation in cancer cells. Conclusion: This study demonstrates that the risk model based on lipid metabolism may be useful for predicting the prognosis of patients with UM. By promoting macrophage M2 polarization, MGLL contributes to the evolution of malignancy in UM, suggesting that it may be a therapeutic target for UM.


Asunto(s)
Melanoma , Monoacilglicerol Lipasas , Humanos , Monoacilglicerol Lipasas/genética , Activación de Macrófagos , Melanoma/genética , Macrófagos , Microambiente Tumoral
6.
J Thorac Dis ; 15(8): 4456-4471, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37691661

RESUMEN

Background: Lung cancer remains a major global health challenge. Macrophages (Macs) are one important component of tumor microenvironments (TMEs); however, their prognostic relevance to lung cancer is currently unknown due to the complexity of their phenotypes. Methods: In the present study, reanalysis and atlas reconstruction of downloaded single-cell RNA sequencing (scRNAseq) data were used to systematically compare the component and transcriptional changes in Mac subtypes across different stages of lung cancer. Results: We found that with the progression of lung cancer, the proportion of alveolar macrophages (aMacs) gradually decreased, while the proportions of Macs and monocytes (Monos) gradually increased, suggesting a chemotaxis process followed by a Mono-Mac differentiation process. Meanwhile, through ligand-receptor (LR) screening, we identified 9 Mac-specific interactions that were enriched during the progression and metastasis of lung cancer, which could potential promote M2 polarization or the infiltration of M2 Macs. Moreover, we found that the expression of SPP1 in Macs increased with lung cancer progression, and identified 9 genes that were correlated with the expression of SPP1 in Macs, which might also contribute to the immunosuppression process in lung cancer. Conclusions: Our results revealed detailed changes in Macs at different stages of lung cancer progression and metastasis and provided potential therapeutic targets that could be used in future lung cancer treatments.

7.
Transl Cancer Res ; 11(10): 3841-3852, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388032

RESUMEN

Background: Mesenchymal stem cells (MSCs) play a crucial role in osteosarcoma (OS) growth and progression. This study conducted a bioinformatics analysis of a single-cell ribonucleic acid sequencing data set and explored the MSC-specific differentially expressed genes (DEGs) in advanced OS. Methods: MSC-specific DEGs from GSE152048 was extracted using Seurat R package. These DEGs were then subjected to the functional analysis, and several key genes were further identified and underwent a prognosis analysis. Results: A total of 234 upregulated and 280 downregulated DEGs were identified between the MSCs and other cells, and a total of 188 upregulated and 158 downregulated DEGs were identified between the MSCs and osteoblastic cells. The Gene Ontology (GO) functional analysis showed that the specific DEGs between the MSCs and osteoblastic cells were enriched in GO terms such as "collagen catabolic process", "positive regulation of pathway-restricted SMAD protein phosphorylation", "osteoblast differentiation", "regulation of release of cytochrome c from mitochondria" and "interleukin-1 production". The specific DEGs between the MSCs and osteoblastic cells were subjected to a protein-protein interaction network analysis. Further, a survival analysis of 20 genes with combined scores >0.94 revealed that the low expression of ANXA1 (annexin A1) and TPM1 (tropomyosin 1) was associated with the shorter overall survival of OS patients, while the high expression of FDPS (farnesyl pyrophosphate synthase), IFITM5 (interferon-induced transmembrane protein 5), FKBP11 (FKBP prolyl isomerase 11), SP7, and SQLE (squalene epoxidase) was associated with the shorter overall survival of OS patients. In a further analysis, we compared the expression of ANXA1, FDPS, IFITM5, FKBP11, SP7, SQLE, and TPM1 between the MSCs and high-grade OS cells. Further validation studies using the GSE42352 data set revealed that ANXA1, FKBP11, SP7, and TPM1 were more upregulated in the MSCs than the high-grade OS cells, while FDPS, IFITM5, and SQLE were more downregulated in the MSCs than the high-grade OS cells. Conclusions: Our bioinformatics analysis revealed 7 hub genes derived from the specific DEGs between the MSCs and osteoblastic cells. The 7 hub genes may serve as potential prognostic biomarkers for patients with OS.

8.
MedComm (2020) ; 3(3): e133, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35811688

RESUMEN

Invasive cancer growth and metastasis account for the poor prognosis of high-grade breast cancer. Recently, we reported that kinectin 1 (KTN1), a member of the kinesin-binding protein family, promotes cell invasion of triple-negative breast cancer and high-grade breast cancer cells by augmenting the NF-κB signaling pathway. However, the upstream mechanism regulating KTN1 is unknown. Therefore, this functional study was performed to decipher the regulatory cohort of KTN1 in high-grade breast cancer. Bioinformatic analysis indicated that transcription factor Yin Yang 1 (YY1) was a potential transactivator of KTN1. High YY1 expression correlated positively with pathological progression and poor prognosis of high-grade breast cancer. Additionally, YY1 promoted cell invasive growth both in vitro and in vivo, in a KTN1-dependent manner. Mechanistically, YY1 could transactivate the KTN1 gene promoter. Alternatively, YY1 could directly interact with a co-factor, DEAD-box helicase 3 X-linked (DDX3X), which significantly co-activated YY1-mediated transcriptional expression of KTN1. Moreover, DDX3X augmented YY1-KTN1 signaling-promoted invasive cell growth of breast cancer. Importantly, overexpression of YY1 enhanced tumor aggressive growth in a mouse breast cancer model. Our findings established a novel DDX3X-assisted YY1-KTN1 regulatory axis in breast cancer progression, which could lead to the development novel therapeutic targets for breast cancer.

9.
Signal Transduct Target Ther ; 6(1): 250, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34219129

RESUMEN

Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer. Various endeavor has been made to explore the molecular biology basis of TNBC. Herein, we reported a novel function of factor Kinectin 1 (KTN1) as a carcinogenic promoter in TNBC. KTN1 expression in TNBC was increased compared with adjacent tissues or luminal or Her2 subtypes of breast cancer, and TNBC patients with high KTN1 expression have poor prognosis. In functional studies, knockdown of KTN1 inhibited the proliferation and invasiveness of TNBC both in vitro and in vivo, while overexpression of KTN1 promoted cancer cell proliferation and invasiveness. RNA-seq analysis revealed that the interaction of cytokine-cytokine receptor, particularly CXCL8 gene, was upregulated by KTN1, which was supported by the further experiments. CXCL8 depletion inhibited the tumorigenesis and progression of TNBC. Additionally, rescue experiments validated that KTN1-mediated cell growth acceleration in TNBC was dependent on CXCL8 both in vitro and in vivo. Furthermore, it was found that KTN1 enhanced the phosphorylation of NF-κB/p65 protein at Ser536 site, and specifically bound to NF-κB/p65 protein in the nucleus and cytoplasm of cells. Moreover, the transcription of CXCL8 gene was directly upregulated by the complex of KTN1 and NF-κB/p65 protein. Taken together, our results elucidated a novel mechanism of KTN1 gene in TNBC tumorigenesis and progression. KTN1 may be a potential molecular target for the development of TNBC treatment.


Asunto(s)
Interleucina-8/genética , Proteínas de la Membrana/genética , Factor de Transcripción ReIA/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Fosforilación/genética , Receptor ErbB-2/genética , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Front Oncol ; 10: 571521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33680914

RESUMEN

The clinical significance of mutation in multiple pulmonary nodules is largely limited by single gene mutation-directed analysis and lack of validation of gene expression profiles. New analytic strategy is urgently needed for comprehensive understanding of genomic data in multiple pulmonary nodules. In this study, we performed whole exome sequencing in 16 multiple lung nodules and 5 adjacent normal tissues from 4 patients with multiple pulmonary nodules and decoded the mutation information from a perspective of cellular functions and signaling pathways. Mutated genes as well as mutation patterns shared in more than two lesions were identified and characterized. We found that the number of mutations or mutated genes and the extent of protein structural changes caused by different mutations is positively correlated with the degree of malignancy. Moreover, the mutated genes in the nodules are associated with the molecular functions or signaling pathways related to cell proliferation and survival. We showed a developing pattern of quantity (the number of mutations/mutated genes) and quality (the extent of protein structural changes) in multiple pulmonary nodules. The mutation and mutated genes in multiple pulmonary nodules are associated with cell proliferation and survival related signaling pathways. This study provides a new perspective for comprehension of genomic mutational data and might shed new light on deciphering molecular evolution of early stage lung adenocarcinoma.

11.
Sci Data ; 6(1): 87, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197171

RESUMEN

Chinese sturgeon (Acipenser sinensis), a critically endangered Acipenseridae family member, is one of the largest anadromous, native fish in China. Numerous research programmes and protection agencies have focused on breeding and preserving this endangered species. However, available information is limited on the different stages of sex development, especially on the reproductive regulation of the hypothalamus-pituitary-gonad (HPG) axis of A. sinensis. To unravel the mechanism of gene interactions during sex differentiation and gonad development of A. sinensis, we performed transcriptome sequencing using HPG samples from male and female A. sinensis in two developmental stages. In this study, 271.19 Gb high-quality transcriptome data were obtained from 45 samples belonging to 15 individuals (six in stage I, six males and three females in stage II). These transcriptomic data will help us understand the reproductive regulation of the HPG axis in the development stages of A. sinensis and provide important reference data for genomic and genetic studies in A. sinensis and related species.


Asunto(s)
Especies en Peligro de Extinción , Peces/fisiología , Perfilación de la Expresión Génica , Sistema Hipotálamo-Hipofisario/fisiología , Diferenciación Sexual/genética , Animales , Femenino , Peces/genética , Genoma , Masculino , Transcriptoma
12.
Gene ; 678: 241-251, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30103010

RESUMEN

The Chinese concave-eared torrent frog (Odorrana tormota) is the first known non-mammalian vertebrate that can communicate using ultrasound. In this species, females are approximately four times as large as males, in which the female growth rate is obviously higher than that of male. Until now, the molecular mechanisms underlying muscle growth development differences between male and female frogs have not been reported. Here, we integrated mRNA and miRNA expression profiles to reveal growth differences in the hindlimb muscles of 2-year-old frogs. Among 569 differentially expressed genes (DEGs), 69 were associated with muscle growth and regeneration. Fifty-one up-regulated genes in females were potentially involved in promoting muscle growth and regeneration, whereas 18 up-regulated genes in males may lead to muscle growth inhibition and fast-twitch muscle fiber contraction. 244 DEGs were enriched in mTOR and other protein synthesis signaling pathways, and protein degradation pathways, including lysosomal protease, calpain, caspase, and ubiquitin-proteasome system pathways. It may interpret why female muscles grow faster than males. Based on expression differences of genes involved in glycolysis and oxidative metabolism, we speculated that the proportion of slow muscle fiber was higher and that of fast muscle fiber was lower in female compared with male muscle. Additionally, 767 miRNAs were identified, including 217 new miRNAs, and 6248 miRNA-negatively regulated mRNAs were predicted. The miRNA target genes were enriched in pathways related to muscle growth, protein synthesis, and degradation. Thus, in addition to the identified mRNA differential expressions, miRNAs may play other important roles in the differential regulation of hindlimb muscle growth between female and male O. tormota.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , MicroARNs/genética , Desarrollo de Músculos , Ranidae/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/crecimiento & desarrollo , Masculino , Análisis de Secuencia de ARN , Caracteres Sexuales
13.
Gigascience ; 6(5): 1-7, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28327996

RESUMEN

The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future 'pan-genomic' comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.


Asunto(s)
Genoma de los Insectos , Hemípteros/genética , Animales , Femenino , Biblioteca de Genes , Masculino , Análisis de Secuencia de ADN
14.
Parasit Vectors ; 8: 451, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26350613

RESUMEN

BACKGROUND: Efforts to completely eradicate lymphatic filariasis from human population may be challenged by the emergence of Brugia pahangi as another zoonotic lymphatic filarial nematode. In this report, a genomic study was conducted to understand this species at molecular level. METHODS: After blood meal on a B. pahangi-harbouring cat, the Aedes togoi mosquitoes were maintained to harvest infective third stage larvae, which were then injected into male Mongolian gerbils. Subsequently, adult B. pahangi were obtained from the infected gerbil for genomic DNA extraction. Sequencing and subsequently, construction of genomic libraries were performed. This was followed by genomic analyses and gene annotation analysis. By using archived protein sequences of B. malayi and a few other nematodes, clustering of gene orthologs and phylogenetics were conducted. RESULTS: A total of 9687 coding genes were predicted. The genome of B. pahangi shared high similarity to that B. malayi genome, particularly genes annotated to fundamental processes. Nevertheless, 166 genes were considered to be unique to B. pahangi, which may be responsible for the distinct properties of B. pahangi as compared to other filarial nematodes. In addition, 803 genes were deduced to be derived from Wolbachia, an endosymbiont bacterium, with 44 of these genes intercalate into the nematode genome. CONCLUSIONS: The reporting of B. pahangi draft genome contributes to genomic archive. Albeit with high similarity to B. malayi genome, the B. pahangi-unique genes found in this study may serve as new focus to study differences in virulence, vector selection and host adaptability among different Brugia spp.


Asunto(s)
Brugia pahangi/genética , Genoma de los Helmintos/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Aedes/parasitología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Filogenia , Wolbachia/genética , Wolbachia/aislamiento & purificación
15.
Nat Genet ; 46(7): 701-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24929829

RESUMEN

Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at ∼140-fold coverage of adult male and female T. suis and ∼80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genoma de los Helmintos , Interacciones Huésped-Parásitos/genética , Porcinos/parasitología , Tricuriasis/genética , Trichuris/genética , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Porcinos/genética , Tricuriasis/parasitología
16.
Gigascience ; 3(1): 27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25671092

RESUMEN

BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

17.
Nat Genet ; 45(5): 563-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525076

RESUMEN

As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the world's fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment-adapted saker.


Asunto(s)
Evolución Biológica , Falconiformes/genética , Polimorfismo de Nucleótido Simple/genética , Conducta Predatoria , Receptores Odorantes/genética , Animales , Falconiformes/clasificación , Falconiformes/crecimiento & desarrollo , Genoma , Datos de Secuencia Molecular
18.
Nat Commun ; 4: 1426, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23385571

RESUMEN

Chinese tree shrews (Tupaia belangeri chinensis) possess many features valuable in animals used as experimental models in biomedical research. Currently, there are numerous attempts to employ tree shrews as models for a variety of human disorders: depression, myopia, hepatitis B and C virus infections, and hepatocellular carcinoma, to name a few. Here we present a publicly available annotated genome sequence for the Chinese tree shrew. Phylogenomic analysis of the tree shrew and other mammalians highly support its close affinity to primates. By characterizing key factors and signalling pathways in nervous and immune systems, we demonstrate that tree shrews possess both shared common and unique features, and provide a genetic basis for the use of this animal as a potential model for biomedical research.


Asunto(s)
Genoma/genética , Tupaia/genética , Animales , China , Variación Genética , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/virología , Humanos , Sistema Inmunológico/metabolismo , Inactivación Metabólica/genética , Ratones , Sistema Nervioso/metabolismo , Filogenia , Análisis de Secuencia de ADN , Tupaia/inmunología
19.
Cell Res ; 23(9): 1091-105, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23917531

RESUMEN

Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.


Asunto(s)
Caimanes y Cocodrilos/genética , Genoma/genética , Caimanes y Cocodrilos/clasificación , Caimanes y Cocodrilos/metabolismo , Animales , Composición de Base/genética , Secuencia de Bases , Bicarbonatos/metabolismo , Transporte Biológico/genética , Elementos Transponibles de ADN/genética , Metabolismo Energético/genética , Hemoglobinas/genética , Sistema Inmunológico , Contracción Muscular/genética , Visión Nocturna/genética , Vías Olfatorias/citología , Opsinas/genética , Oxígeno/metabolismo , Análisis de Secuencia de ADN , Procesos de Determinación del Sexo/genética , Olfato/genética , Factores de Transcripción/genética , Percepción Visual/genética
20.
Nat Genet ; 44(8): 946-9, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22751099

RESUMEN

Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.


Asunto(s)
Aclimatación/genética , Altitud , Bovinos/genética , Bovinos/fisiología , Animales , Secuencia de Bases , ADN/genética , Evolución Molecular , Femenino , Genoma , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA