Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403991, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136429

RESUMEN

Acquiring a highly efficient electrocatalyst capable of sustaining prolonged operation under high current density is of paramount importance for the process of electrocatalytic water splitting. Herein, Fe-doped phosphide (Fe-Ni5P4) derived from the NiFc metal-organic framework (NiFc-MOF) (Fc: 1,1'-ferrocene dicarboxylate) shows high catalytic activity for overall water splitting (OWS). Fe-Ni5P4||Fe-Ni5P4 exhibits a low voltage of 1.72 V for OWS at 0.5 A cm-2 and permits stable operation for 2700 h in 1.0 m KOH. Remarkably, Fe-Ni5P4||Fe-Ni5P4 can sustain robust water splitting at an extra-large current density of 1 A cm-2 for 1170 h even in alkaline seawater. Theoretical calculations confirm that Fe doping simultaneously reduces the reaction barriers of coupling and desorption (O*→OOH*, OOH*→O2 *) in the oxygen evolution reaction (OER) and regulates the adsorption strength of the intermediates (H2O*, H*) in the hydrogen evolution reaction (HER), enabling Fe-Ni5P4 to possess excellent dual functional activity. This study offers a valuable reference for the advancement of highly durable electrocatalysts through the regulation derived from coordination frameworks, with significant implications for industrial applications and energy conversion technologies.

2.
Sci Bull (Beijing) ; 69(6): 763-771, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38246797

RESUMEN

The development of cost-effective electrocatalysts with high efficiency and long durability for hydrogen evolution reaction (HER) remains a great challenge in the field of water splitting. Herein, we design an ultrafine and highly dispersed Ru nanoparticles stabilized on porous V8C7/C matrix via pyrolysis of the metal-organic frameworks V-BDC (BDC: 1,4-benzenedicarboxylate). The obtained Ru-V8C7/C composite exhibits excellent HER performance in all pH ranges. At the overpotential of 40 mV, its mass activity is about 1.9, 4.1 and 9.4 times higher than that of commercial Pt/C in acidic, neutral and alkaline media, respectively. Meanwhile, Ru-V8C7/C shows the remarkably high stability in all pH ranges which, in particular, can maintain the current density of 10 mA cm-2 for over 150 h in 1.0 mol L-1 phosphate buffer saline (PBS). This outstanding HER performance can be attributed to the high intrinsic activity of Ru species and their strong interface interactions to the V8C7/C substrate. The synergistic effect of abundant active sites on the surface and the formed Ru-C-V units at the interface promotes the adsorption of reaction intermediates and the release of active sites, contributing the fast HER kinetics. This work provides a reference for developing versatile and robust HER catalysts by surface and interface regulation for pH tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA