Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(2): 647-661, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35019997

RESUMEN

Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.


Asunto(s)
Proteínas Fúngicas , Penicillium , Amilasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Glicósido Hidrolasas/genética , Penicillium/genética , Penicillium/metabolismo , Regiones Promotoras Genéticas
2.
Microb Cell Fact ; 19(1): 155, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727458

RESUMEN

BACKGROUND: Filamentous fungi have long been used as hosts for the production of proteins, enzymes and valuable products in various biotechnological applications. However, recombinant proteins are expressed with highly secreted host proteins when stronger promoters are used under inducing conditions. In addition, the efficiency of target protein expression can be limited by the application of constitutive promoters in recently developed filamentous fungal expression systems. RESULTS: In this study, a novel expression system was constructed by using a Penicillium oxalium strain that has powerful protein secretion capability. The secretory background of the host was reduced by knocking out the Amy13A protein and utilizing the starch as a carbon source. The strong promoter amy15A(p) was further improved by overexpressing the transcription activator AmyR and deleting of putative repressor CreA. By using the native amylase Amy15A as a reporter, the efficiency of expression from the amy15A promoter was dramatically and specifically enhanced after redesigning the regulatory network of amylase expression. CONCLUSIONS: Our researches clearly indicated that the triple-gene recombinant strain Δ13A-OamyR-ΔCreA, with the amy15A(p) promoter could be used as a suitable expression system especially for high-level and high-purity protein production.


Asunto(s)
Amilasas/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Penicillium/genética , Amilasas/biosíntesis , Penicillium/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Almidón/metabolismo , Factores de Transcripción/genética , Ureohidrolasas/genética
3.
Transl Androl Urol ; 13(5): 748-758, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38855583

RESUMEN

Background: The association between psoriasis and erectile dysfunction (ED) is currently inconsistent in epidemiological and observational studies and the causal relationship between them has not been established. The aim of our study is to explore the potential genetic association between ED and psoriasis. Methods: We explored the putative causality between psoriasis and ED by bidirectional Mendelian randomization (MR). The single nucleotide polymorphisms (SNPs) associated with psoriasis were retrieved from a large-scale public genome-wide association study (GWAS). The summary statistics of ED were obtained from individuals of European ancestry with 6,175 cases vs. 217,630 controls. Inverse-variant weighted (IVW), weighted median (WM), MR-Egger, MR-Steiger, and MR pleiotropy residual sum and outlier (MR-PRESSO) test were employed in MR analyses to investigate the bidirectional causal relationship between psoriasis and ED. Several sensitivity analyses were employed to confirm the findings of the MR analysis. Results: Our MR analysis indicated that genetically predicted psoriasis showed no association with a higher risk of ED [odds ratio (OR) 2.878, 95% confidence interval (CI): 0.175-47.289, P=0.46]. As for the other direction, no causal association was disclosed between ED and psoriasis (OR 0.999, 95% CI: 0.997-1.002, P=0.62). These findings remained consistent in sensitivity analyses. Conclusions: The study revealed a negative genetic association between psoriasis and ED. Certain acquired factors may contribute to a strong clinical connection between the two, highlighting the need for comprehensive management of these risk factors.

4.
Eur J Pharm Sci ; 200: 106830, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878906

RESUMEN

Dual antiplatelet therapy with aspirin and clopidogrel has reduced ischemic vascular events significantly. Genetic influence, especially those in clopidogrel pharmacokinetic-relevant genes partially accounts for interindividual pharmacodynamic variability of clopidogrel. However, most studies have concentrated on the genetic variations in introns, exons, or promoters of the candidate genes, and the association between genetic variations in 3'-UTR in clopidogrel pharmacokinetic-relevant genes and clopidogrel response is unknown. In our study, ten different algorithms were applied to pick potential miRNAs targeting the clopidogrel pharmacokinetic-relevant genes. Furthermore, the correlation between miRNA expression profiles and mRNA expression of corresponding clopidogrel pharmacokinetic-relevant genes was analyzed. Through comprehensive analysis, including bioinformatics prediction and correlation analysis of miRNA and mRNA expression profiles, miR-218-5p and miR-506-5p were supposed to regulate the expression of PON1 via binding with its 3'-UTR. Moreover, PON1 rs854551 and rs854552 were located in miRNA recognizing sequences and may serve as potential miRSNPs possibly affecting PON1 expression. The rs854552 polymorphism was genotyped and platelet reactivity index (PRI) indicative of clopidogrel response was measured in 341 Chinese coronary artery disease (CAD) patients 24 h after administration of 300 mg clopidogrel. Our results showed that PON1 rs854552 had a significant influence on PRI in CAD patients, especially in patients with CYP2C19 extensive metabolic phenotype. In conclusion, PON1 rs854552 polymorphisms may affect clopidogrel response. Bioinformatics prediction followed by functional validation could aid in decoding the contribution of unexplained variations in the 3'-UTR in drug-metabolizing enzymes on clopidogrel response.

5.
Enzyme Microb Technol ; 162: 110150, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335861

RESUMEN

Filamentous fungi are widely used in the field of recombinant protein expression due to their well-established protein modification systems and excellent secretion capacities. Although Penicillium oxalicum has been developed as an expression host, its potential for efficient and convenient protein production has not been fully exploited. In this study, we obtained an engineered strain by dominant activation of the G protein PGA3 using a point-mutation method based on the low extracellular background P. oxalicum host Δ13A-OamyR. This genetically modified strain, OamyR-QL, with faster cell growth and a more efficient Pamy15A promoter, will be used to construct a novel expression system. The relevant genes and pathways involved in the response to the G protein dominant activation in the engineered strain were revealed by RNA sequencing. Moreover, the transcription activator AmyR was overexpressed in OamyR-QL, resulting in a dramatically enhanced efficiency of the Pamy15A promoter. The construction of an efficient, low-background system by utilizing the G protein-AmyR regulatory pathway provides not only a theoretical reference for the genetic engineering of other filamentous fungal strains, but also a preferable option for the efficient and high purity expression of recombinant proteins in filamentous fungi.


Asunto(s)
Celulasa , Penicillium , Regulación Fúngica de la Expresión Génica , Celulasa/metabolismo , Factores de Transcripción/genética
6.
Biotechnol Biofuels Bioprod ; 15(1): 62, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641999

RESUMEN

BACKGROUND: Starch is a very abundant and renewable carbohydrate and an important feedstock for industrial applications. However, most starch-based products are not cost-efficient due to the high energy input needed in traditional enzymatic starch conversion processes. Raw-starch-digesting enzymes (RSDEs) from filamentous fungi have great commercial value in starch processing. However, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. RESULTS: In this study, we reported the novel finding that cellulolytic fungus Penicillium oxalicum 114-2 has broad RSDE activity. Four regulators, including the amylase transcription activator AmyR, the catabolite repression repressor CreA, the group III G protein α subunit PGA3, and the nonhistone chromosomal protein HepA, have been found to play a crucial regulatory role in RSDE expression. Enzymatic assays revealed that RSDE production significantly increased after the overexpression of AmyR and HepA, the deletion of CreA and the dominant activation of PGA3. RT-qPCR analysis demonstrated that there is a mutual regulation mode between the four regulators, and then formed a cascade regulation mechanism that is involved in RSDE expression. Comparative transcriptomic analysis between the wild-type strain and genetically engineered strains revealed differentially expressed genes that may mediate the RSDE expression. CONCLUSIONS: The four different types of regulators were systematically investigated and found to form a regulatory network controlling RSDE gene expression. Our results provide a new insight into the regulatory mechanism of fungal amylolytic enzyme expression and offer a theoretical basis to rationally improve the RSDE yield in the future.

7.
Phys Fluids (1994) ; 33(4): 046605, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33953530

RESUMEN

A recent study reported that an aerosolized virus (COVID-19) can survive in the air for a few hours. It is highly possible that people get infected with the disease by breathing and contact with items contaminated by the aerosolized virus. However, the aerosolized virus transmission and trajectories in various meteorological environments remain unclear. This paper has investigated the movement of aerosolized viruses from a high concentration source across a dense urban area. The case study looks at the highly air polluted areas of London: University College Hospital (UCH) and King's Cross and St Pancras International Station (KCSPI). We explored the spread and decay of COVID-19 released from the hospital and railway stations with the prescribed meteorological conditions. The study has three key findings: the primary result is that the concentration of viruses decreases rapidly by a factor of 2-3 near the sources although the virus may travel from meters up to hundreds of meters from the source location for certain meteorological conditions. The secondary finding shows viruses released into the atmosphere from entry and exit points at KCSPI remain trapped within a small radial distance of < 50 m. This strengthens the case for the use of face coverings to reduce the infection rate. The final finding shows that there are different levels of risk at various door locations for UCH; depending on which door is used there can be a higher concentration of COVID-19. Although our results are based on London, since the fundamental knowledge processes are the same, our study can be further extended to other locations (especially the highly air polluted areas) in the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA