Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(11): 16401-16412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311685

RESUMEN

Graphene (GR) is a new type of carbon-based material that combines many excellent properties. In order to give full play to the excellent properties of graphene and expand its application scope, this study used ionic liquid SbF6 to modify it and successfully prepared ionic liquid modified graphene composites (H/GR), and studied its adsorption mechanism of arsenic in aqueous solution. By investigating the effects of reaction temperature, reaction time, pH, adsorbent (H/GR) dosage, and humic acid concentration on the removal rate of arsenic in aqueous solution, the experimental results showed that when the reaction temperature was 30 °C, reaction time was 1 h, pH was 6, H/GR dosage was 0.1g·L-1, and humic acid (HA) concentration was 10 mg·L-1, the best arsenic removal effect was achieved with a maximum. The removal rate was 99.4%. The equilibrium adsorption capacity was well modeled by the Langmuir, Freundlich, and Tenkin models at 30 °C. The Langmuir adsorption isotherm was the most consistent, with a calculated maximum value of 137.95 mg·g-1, which is higher than most adsorbents in the field. In addition, it was determined that the graphene surface was indeed immobilized with the ionic liquid [Hmim]SbF6 by SEM mapping and EDS energy spectroscopy observation, and the adsorption isotherms and pore size distribution maps of graphene before and after the loading of the ionic liquid were analyzed by BET, which further confirmed a significant increase in the microporosity and porosity of the modified H/GR, and furthermore, it was demonstrated that the arsenic ions are chemically bonded with and indeed adsorbed on the surface of the H/GR by FT-IR and XPS characterization analyses. The results of all experimental data studies indicate that the main mechanism of As(V) removal from water by H/GR is due to electrostatic adsorption, ion exchange, and complexation between the modified graphene itself and the ionic liquid [Hmim]SbF6 itself.


Asunto(s)
Arsénico , Grafito , Líquidos Iónicos , Contaminantes Químicos del Agua , Arsénico/análisis , Grafito/química , Líquidos Iónicos/análisis , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Sustancias Húmicas/análisis , Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
2.
Environ Sci Pollut Res Int ; 31(16): 23334-23362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436845

RESUMEN

Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Purificación del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Ambientales/análisis , Ecosistema , Predicción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA