Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(6): 931-955, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360997

RESUMEN

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Asunto(s)
Beclina-1 , Carcinoma de Células Renales , Neoplasias Renales , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Humanos , Ratones , Autofagia , Beclina-1/genética , Beclina-1/metabolismo , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Hidroxilación , Neoplasias Renales/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Nat Chem Biol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538923

RESUMEN

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

3.
PLoS Genet ; 17(3): e1009488, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780446

RESUMEN

Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/ultraestructura , Fibras Musculares Esqueléticas/ultraestructura , Especificidad de Órganos , Oxidación-Reducción , Estrés Oxidativo
4.
Proc Natl Acad Sci U S A ; 116(24): 11776-11785, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31123148

RESUMEN

The cytoplasmic coat protein complex-II (COPII) is evolutionarily conserved machinery that is essential for efficient trafficking of protein and lipid cargos. How the COPII machinery is regulated to meet the metabolic demand in response to alterations of the nutritional state remains largely unexplored, however. Here, we show that dynamic changes of COPII vesicle trafficking parallel the activation of transcription factor X-box binding protein 1 (XBP1s), a critical transcription factor in handling cellular endoplasmic reticulum (ER) stress in both live cells and mouse livers upon physiological fluctuations of nutrient availability. Using live-cell imaging approaches, we demonstrate that XBP1s is sufficient to promote COPII-dependent trafficking, mediating the nutrient stimulatory effects. Chromatin immunoprecipitation (ChIP) coupled with high-throughput DNA sequencing (ChIP-seq) and RNA-sequencing analyses reveal that nutritional signals induce dynamic XBP1s occupancy of promoters of COPII traffic-related genes, thereby driving the COPII-mediated trafficking process. Liver-specific disruption of the inositol-requiring enzyme 1α (IRE1α)-XBP1s signaling branch results in diminished COPII vesicle trafficking. Reactivation of XBP1s in mice lacking hepatic IRE1α restores COPII-mediated lipoprotein secretion and reverses the fatty liver and hypolipidemia phenotypes. Thus, our results demonstrate a previously unappreciated mechanism in the metabolic control of liver protein and lipid trafficking: The IRE1α-XBP1s axis functions as a nutrient-sensing regulatory nexus that integrates nutritional states and the COPII vesicle trafficking.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Endorribonucleasas/metabolismo , Nutrientes/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Movimiento Celular/fisiología , Inmunoprecipitación de Cromatina/métodos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Lípidos/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/fisiología
5.
Am J Orthod Dentofacial Orthop ; 161(5): e456-e465, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35153113

RESUMEN

INTRODUCTION: This study evaluated the initial stress produced in the periodontal ligament (PDL) and the displacements of mandibular incisors under masticatory force in patients with alveolar bone loss (ABL) after orthodontic treatment. METHODS: Four horizontal absorption models (zero, one third, one half, and two thirds of root length) and 2 labiolingual absorption models (labial two thirds, lingual one third of root length, and vice versa) of the mandibular anterior segment were constructed. A total force of 285.3 N was applied vertically to the edges of incisors. The tooth displacement and principal stresses in the PDL were evaluated in a finite element analysis. RESULTS: In all models, the labial movements of the central incisors ascended more significantly, whereas there was obvious compressive stress and tensile stress concentrated in the labial and lingual cervical margins of the PDL, respectively. For the lateral incisors, augmentation of the distal motions was more evident. Compressive stress was apparent in the labial-distal margin, and tensile stress was concentrated in the lingual-mesial cervical margin. With the same proportion of ABL, more significant displacement and stress concentration in the PDL occurred in the central incisors. In labiolingual absorption models, labial ABL caused greater incisors displacement and periodontal stress concentration. When horizontal ABL extended from one half to two thirds of the root length, mobility of the central incisors and stresses in the PDL increased significantly. CONCLUSIONS: Mandibular incisors follow the different movement and stress distribution patterns under occlusal loads. Special consideration should be given to the retention of mandibular incisors when horizontal ABL exceeds half of the root length.


Asunto(s)
Pérdida de Hueso Alveolar , Incisivo , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/etiología , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Ligamento Periodontal , Estrés Mecánico , Técnicas de Movimiento Dental/efectos adversos
7.
J Mater Sci Mater Med ; 32(12): 145, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34862928

RESUMEN

Periodontitis is a progressive infectious inflammatory disease, which leads to alveolar bone resorption and loss of periodontal attachment. It is imperative for us to develop a therapeutic scaffold to repair the alveolar bone defect of periodontitis. In this study, we designed a new composite scaffold loading metformin (MET) by using the freeze-drying method, which was composed of ß-tricalcium phosphate (ß-TCP), chitosan (CTS) and the mesoporous silica (SBA-15). The scaffolds were expected to combine the excellent biocompatibility of CTS, the good bioactivity of ß-TCP, and the anti-inflammatory properties of MET. The MET-loaded ß-TCP/CTS/SBA-15 scaffolds showed improved cell adhesion, appropriate porosity and good biocompatibility in vitro. This MET composite scaffold was implanted in the alveolar bone defects area of rats with periodontitis. After 12 weeks, Micro-CT and histological analysis were performed to evaluate different degrees of healing and mineralization. Results showed that the MET-loaded ß-TCP/CTS/SBA-15 scaffolds promoted alveolar bone regeneration in a rat model of periodontitis. To our knowledge, this is the first report that MET-loaded ß-TCP/CTS/SBA-15 scaffolds have a positive effect on alveolar bone regeneration in periodontitis. Our findings might provide a new and promising strategy for repairing alveolar bone defects under the condition of periodontitis.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Fosfatos de Calcio/química , Quitosano/química , Metformina/farmacología , Periodontitis/terapia , Dióxido de Silicio/química , Proceso Alveolar , Animales , Células de la Médula Ósea , Supervivencia Celular , Masculino , Metformina/química , Ratas , Ratas Sprague-Dawley , Células Madre , Andamios del Tejido
8.
J Biol Chem ; 291(49): 25306-25318, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27738103

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, which are critical fuel metabolites of skeletal muscle particularly during exercise. However, the physiological relevance of LDH remains poorly understood. Here we show that Ldhb expression is induced by exercise in human muscle and negatively correlated with changes in intramuscular pH levels, a marker of lactate production, during isometric exercise. We found that the expression of Ldhb is regulated by exercise-induced peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Ldhb gene promoter reporter studies demonstrated that PGC-1α activates Ldhb gene expression through multiple conserved estrogen-related receptor (ERR) and myocyte enhancer factor 2 (MEF2) binding sites. Transgenic mice overexpressing Ldhb in muscle (muscle creatine kinase (MCK)-Ldhb) exhibited increased exercise performance and enhanced oxygen consumption during exercise. MCK-Ldhb muscle was shown to have enhanced mitochondrial enzyme activity and increased mitochondrial gene expression, suggesting an adaptive oxidative muscle transformation. In addition, mitochondrial respiration capacity was increased and lactate production decreased in MCK-Ldhb skeletal myotubes in culture. Together, these results identified a previously unrecognized Ldhb-driven alteration in muscle mitochondrial function and suggested a mechanism for the adaptive metabolic response induced by exercise training.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , L-Lactato Deshidrogenasa/biosíntesis , Mitocondrias Musculares/enzimología , Músculo Esquelético/enzimología , Condicionamiento Físico Animal , Animales , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Ratones , Ratones Transgénicos , Mitocondrias Musculares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
9.
Biochim Biophys Acta ; 1852(9): 1876-86, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071641

RESUMEN

N-myc downstream-regulated gene 1 (NDRG1) has been implicated in tumorigenesis and metastasis in different cancers. However, its role in nasopharyngeal carcinoma remains unknown. We found that NDRG1 expression level was high in nasopharyngeal cancer 5-8F cells but low in 5-8F-LN cells with lymphatic metastasis potential. Knockdown of NDRG1 by shRNA promoted 5-8F cell proliferation, migration, and invasion in vitro and its tumorigenesis in vivo. Moreover, NDRG1 deficiency induced an epithelial-mesenchymal transition (EMT) of 5-8F cells as shown by an attenuation of E-cadherin and an induction of N-cadherin and vimentin expression. NDRG1 knockdown also enhanced Smad2 expression and phosphorylation. Smad2 signaling was attenuated in 5-8F cells but was significantly activated in 5-8F-LN cells. Knockdown of Smad2 restored E-cadherin but attenuated N-cadherin expression in NDRG1-deficient 5-8F cells, suggesting a reduction of EMT. Consistently, blockade of Smad2 in 5-8F-LN cells increased E-cadherin while diminishing N-cadherin and vimentin expression. These data indicate that Smad2 mediates the NDRG1 deficiency-induced EMT of 5-8F cells. In tumors derived from NDRG1-deficient 5-8F cells, E-cadherin expression was inhibited while vimentin and Smad2 were increased in a large number of cancer cells. Most importantly, NDRG1 expression was attenuated in human nasopharyngeal carcinoma tissues, resulted in a lower survival rate in patients. The NDRG1 was further decreased in the detached nasopharyngeal cancer cells, which was associated with a further reduced survival rate in patients with lymphatic metastasis. Taken together, these results demonstrated that NDRG1 prevents nasopharyngeal tumorigenesis and metastasis via inhibiting Smad2-mediated EMT of nasopharyngeal cells.

10.
Discov Oncol ; 15(1): 23, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294583

RESUMEN

BACKGROUNDS: The hypoxia-responsive state of cancer is a complex pathophysiological process involving numerous genes playing different roles. Due to the rapid proliferation of cancer cells and chaotic angiogenesis, the clinical features of hypoxia-responsive states are not yet clear in patients with ovarian cancer. METHODS: Based on the RNA expression levels of 14 hypoxic markers, our study screened out hypoxia-related genes and construct a hypoxic score pattern to quantify the hypoxia-responsive states of a single tumor. Combining clinical prognosis, tumor mutation burden, microsatellite instability, the expression level of the immune checkpoint, IC50, and other indicators to evaluate the impact of different hypoxia-responsive states on clinical prognosis and therapeutic sensitivity. RESULTS: Our study identified a subgroup with an active hypoxia-responsive state and they have a worse clinical prognosis but exhibit higher immunogenicity and higher sensitivity to immunotherapy. CONCLUSIONS: This work revealed that hypoxia-responsive states played an important role in formation of tumor immunogenicity. Evaluating the hypoxia-responsive state will contribute to guiding more effective immunotherapy strategies.

11.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692246

RESUMEN

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Asunto(s)
Proliferación Celular , Colágeno , Fibroblastos , Hialuronoglucosaminidasa , Miofibroblastos , Ligamento Periodontal , Factor de Crecimiento Transformador beta , Animales , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Hialuronoglucosaminidasa/farmacología , Ratas , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Colágeno/metabolismo , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ácido Hialurónico/farmacología , Células Cultivadas , Ratas Sprague-Dawley , Actinas/metabolismo , Western Blotting , Técnicas In Vitro , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , ARN Mensajero/metabolismo
12.
Sci Adv ; 10(6): eadj2752, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324677

RESUMEN

Exercise-induced activation of adenosine monophosphate-activated protein kinase (AMPK) and substrate phosphorylation modulate the metabolic capacity of mitochondria in skeletal muscle. However, the key effector(s) of AMPK and the regulatory mechanisms remain unclear. Here, we showed that AMPK phosphorylation of the folliculin interacting protein 1 (FNIP1) serine-220 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Loss of FNIP1 in skeletal muscle resulted in increased mitochondrial content and augmented metabolic capacity, leading to enhanced exercise endurance in mice. Using skeletal muscle-specific nonphosphorylatable FNIP1 (S220A) and phosphomimic (S220D) transgenic mouse models as well as biochemical analysis in primary skeletal muscle cells, we demonstrated that exercise-induced FNIP1 (S220) phosphorylation by AMPK in muscle regulates mitochondrial electron transfer chain complex assembly, fuel utilization, and exercise performance without affecting mechanistic target of rapamycin complex 1-transcription factor EB signaling. Therefore, FNIP1 is a multifunctional AMPK effector for mitochondrial adaptation to exercise, implicating a mechanism for exercise tolerance in health and disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Portadoras , Ratones , Animales , Fosforilación/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo
13.
Nat Metab ; 6(6): 1092-1107, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773347

RESUMEN

Lipid droplet tethering with mitochondria for fatty acid oxidation is critical for tumor cells to counteract energy stress. However, the underlying mechanism remains unclear. Here, we demonstrate that glucose deprivation induces phosphorylation of the glycolytic enzyme phosphofructokinase, liver type (PFKL), reducing its activity and favoring its interaction with perilipin 2 (PLIN2). On lipid droplets, PFKL acts as a protein kinase and phosphorylates PLIN2 to promote the binding of PLIN2 to carnitine palmitoyltransferase 1A (CPT1A). This results in the tethering of lipid droplets and mitochondria and the recruitment of adipose triglyceride lipase to the lipid droplet-mitochondria tethering regions to engage lipid mobilization. Interfering with this cascade inhibits tumor cell proliferation, promotes apoptosis and blunts liver tumor growth in male mice. These results reveal that energy stress confers a moonlight function to PFKL as a protein kinase to tether lipid droplets with mitochondria and highlight the crucial role of PFKL in the integrated regulation of glycolysis, lipid metabolism and mitochondrial oxidation.


Asunto(s)
Proliferación Celular , Glucólisis , Gotas Lipídicas , Lipólisis , Mitocondrias , Oxidación-Reducción , Gotas Lipídicas/metabolismo , Animales , Mitocondrias/metabolismo , Ratones , Humanos , Masculino , Metabolismo de los Lípidos , Perilipina-2/metabolismo , Fosforilación , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral
14.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838134

RESUMEN

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Asunto(s)
Huesos , Factor II del Crecimiento Similar a la Insulina , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Huesos/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Transducción de Señal
15.
Arq Bras Oftalmol ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37018826

RESUMEN

PURPOSE: To explore the therapeutic effects of orthokeratology lens combined with 0.01% atropine eye drops on juvenile myopia. METHODS: A total of 340 patients with juvenile myopia (340 eyes) treated from 2018 to December 2020 were divided into the control group (170 cases with 170 eyes, orthokeratology lens) and observation group (170 cases with 170 eyes, orthokeratology lens combined with 0.01% atropine eye drops). The best-corrected distance visual acuity, best-corrected near visual acuity, diopter, axial length, amplitude of accommodation, bright pupil diameter, dark pupil diameter, tear-film lipid layer thickness, and tear break-up time were measured before treatment and after 1 year of treatment. The incidence of adverse reactions was observed. RESULTS: Compared with the values before treatment, the spherical equivalent degree was significantly improved by 0.22 (0.06, 0.55) D and 0.40 (0.15, 0.72) D in the observation and control groups after the treatment, respectively (p<0.01). After the treatment, the axial length was significantly increased by (0.15 ± 0.12) mm and (0.24 ± 0.11) mm in the observation and control groups, respectively, (p<0.01). After the treatment, the amplitude of accommodation significantly declined in the observation group and was lower than that in the control group, whereas both bright and dark pupil diameters significantly increase and were larger than those in the control group (p<0.01). After the treatment, the tear-film lipid layer thickness and tear break-up time significantly declined in the two groups (p<0.01). CONCLUSIONS: Orthokeratology lens combined with 0.01% atropine eye drops can synergistically enhance the control effect on juvenile myopia with high safety.

16.
Nat Cell Biol ; 25(2): 273-284, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646788

RESUMEN

Impairment of the circadian clock is linked to cancer development. However, whether the circadian clock is modulated by oncogenic receptor tyrosine kinases remains unclear. Here we demonstrated that receptor tyrosine kinase activation promotes CK2-mediated CLOCK S106 phosphorylation and subsequent disassembly of the CLOCK-BMAL1 dimer and suppression of the downstream gene expression in hepatocellular carcinoma (HCC) cells. In addition, CLOCK S106 phosphorylation exposes its nuclear export signal to bind Exportin1 for nuclear exportation. Cytosolic CLOCK acetylates PRPS1/2 K29 and blocks HSC70-mediated and lysosome-dependent PRPS1/2 degradation. Stabilized PRPS1/2 promote de novo nucleotide synthesis and HCC cell proliferation and liver tumour growth. Furthermore, CLOCK S106 phosphorylation and PRPS1/2 K29 acetylation are positively correlated in human HCC specimens and with HCC poor prognosis. These findings delineate a critical mechanism by which oncogenic signalling inhibits canonical CLOCK transcriptional activity and simultaneously confers CLOCK with instrumental moonlighting functions to promote nucleotide synthesis and tumour growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Nucleótidos/metabolismo , Fosforilación
17.
Nat Commun ; 14(1): 7136, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932296

RESUMEN

Ischaemia of the heart and limbs attributable to compromised blood supply is a major cause of mortality and morbidity. The mechanisms of functional angiogenesis remain poorly understood, however. Here we show that FNIP1 plays a critical role in controlling skeletal muscle functional angiogenesis, a process pivotal for muscle revascularization during ischemia. Muscle FNIP1 expression is down-regulated by exercise. Genetic overexpression of FNIP1 in myofiber causes limited angiogenesis in mice, whereas its myofiber-specific ablation markedly promotes the formation of functional blood vessels. Interestingly, the increased muscle angiogenesis is independent of AMPK but due to enhanced macrophage recruitment in FNIP1-depleted muscles. Mechanistically, myofiber FNIP1 deficiency induces PGC-1α to activate chemokine gene transcription, thereby driving macrophage recruitment and muscle angiogenesis program. Furthermore, in a mouse hindlimb ischemia model of peripheral artery disease, the loss of myofiber FNIP1 significantly improved the recovery of blood flow. Thus, these results reveal a pivotal role of FNIP1 as a negative regulator of functional angiogenesis in muscle, offering insight into potential therapeutic strategies for ischemic diseases.


Asunto(s)
Macrófagos , Músculo Esquelético , Ratones , Animales , Ratones Noqueados , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Isquemia , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica , Proteínas Portadoras/metabolismo
18.
Nat Cell Biol ; 25(6): 848-864, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217599

RESUMEN

Mitochondrial proteases are emerging as key regulators of mitochondrial plasticity and acting as both protein quality surveillance and regulatory enzymes by performing highly regulated proteolytic reactions. However, it remains unclear whether the regulated mitochondrial proteolysis is mechanistically linked to cell identity switching. Here we report that cold-responsive mitochondrial proteolysis is a prerequisite for white-to-beige adipocyte cell fate programming during adipocyte thermogenic remodelling. Thermogenic stimulation selectively promotes mitochondrial proteostasis in mature white adipocytes via the mitochondrial protease LONP1. Disruption of LONP1-dependent proteolysis substantially impairs cold- or ß3 adrenergic agonist-induced white-to-beige identity switching of mature adipocytes. Mechanistically, LONP1 selectively degrades succinate dehydrogenase complex iron sulfur subunit B and ensures adequate intracellular succinate levels. This alters the histone methylation status on thermogenic genes and thereby enables adipocyte cell fate programming. Finally, augmented LONP1 expression raises succinate levels and corrects ageing-related impairments in white-to-beige adipocyte conversion and adipocyte thermogenic capacity. Together, these findings reveal that LONP1 links proteolytic surveillance to mitochondrial metabolic rewiring and directs cell identity conversion during adipocyte thermogenic remodelling.


Asunto(s)
Adipocitos , Mitocondrias , Adipocitos Marrones/metabolismo , Mitocondrias/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Succinatos/metabolismo , Proteínas Mitocondriales/metabolismo
19.
Nat Cell Biol ; 25(5): 714-725, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156912

RESUMEN

Activation of receptor protein kinases is prevalent in various cancers with unknown impact on ferroptosis. Here we demonstrated that AKT activated by insulin-like growth factor 1 receptor signalling phosphorylates creatine kinase B (CKB) T133, reduces metabolic activity of CKB and increases CKB binding to glutathione peroxidase 4 (GPX4). Importantly, CKB acts as a protein kinase and phosphorylates GPX4 S104. This phosphorylation prevents HSC70 binding to GPX4, thereby abrogating the GPX4 degradation regulated by chaperone-mediated autophagy, alleviating ferroptosis and promoting tumour growth in mice. In addition, the levels of GPX4 are positively correlated with the phosphorylation levels of CKB T133 and GPX4 S104 in human hepatocellular carcinoma specimens and associated with poor prognosis of patients with hepatocellular carcinoma. These findings reveal a critical mechanism by which tumour cells counteract ferroptosis by non-metabolic function of CKB-enhanced GPX4 stability and underscore the potential to target the protein kinase activity of CKB for cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Creatina Quinasa , Ferroptosis/genética , Fosforilación
20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 2): m187, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22346858

RESUMEN

The water-coordinated Ni(2+) cation in the title compound, [Ni(C(10)H(5)N(3)O(4))(H(2)O)](n), assumes an octa-hedral NiN(3)O(3) coord-ination mode and is N,O-chelated by two deprotonated 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarb-oxy-lic acid (HPyImDC(2-)) ligands, forming a layer structure extending in the bc plane. The chains are arranged along the b-axis direction, forming a layer structure extending in the bc plane. O-H⋯O hydrogen bonding between the layers results in the formation of a three-dimensional supra-molecular framework. The structure is isotypic with the Zn analogue [Li et al. (2009). Cryst. Growth Des.6, 3423-3431].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA