Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(17): 3985-3996, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581533

RESUMEN

The excitation-dependent emission properties of carbon dots (Cdots) are extensively reported, but their red emission is often weak, limiting their wider application. Here we introduce ethidium bromide, as a functional precursor with red emission, to enhance the red emission for Cdots, with comparable intensity at a broad wavelength range to multi-emission Cdots (M-Cdots). We found that Cdots prepared with ethidium bromide/ethylenediamine exhibited strong blue and red emission at 440 and 615 nm, with optimal excitation at 360 and 470 nm as M-Cdots, respectively, but the Cdots from single ethidium bromide (EB-Cdots) possessed weak red emission. M-Cdots exhibited a broad absorption band at 478 nm, but a band blue-shifted to 425 nm was observed for EB-Cdots, while no absorption was observed at 478-425 nm for the Cdots prepared with citric acid and ethylenediamine. Thus, we proposed that C=O and C=N formed a π-conjugation structure as the absorption band at 478 nm for the red emission of M-Cdots, as also confirmed with the excitation at 470 nm. Moreover, the π-conjugation structure is fragile and sensitive to harsh conditions, so red emission was difficult to observe for the Cdots prepared with citric acid/ethylenediamine or single ethidium bromide. M-Cdots possess two centers for blue and red emission with different structures. The dual emission was therefore used for ratiometric sensing with dichromate (Cr2O72-) and formaldehyde (HCHO) as the targets using the intensity ratio of the emissions at 615 and 440 nm. Due to the comparable intensity at a broad wavelength range, we designed encryption codes with five excitations at 360, 400, 420, 450, and 470 nm as the inputs, and the emission colors were used for information decoding. Thus, we determined why red emission was difficult to realize for Cdots, and our results could motivate the design of red-emission Cdots for extensive applications.

2.
Plant Physiol ; 189(4): 2281-2297, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35543497

RESUMEN

The parasitic plant Striga (Striga hermonthica) invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium results from the prehaustorium, which is derived directly from the differentiation of the Striga radicle. The molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental programs that regulate terminal prehaustorium formation in S. hermonthica at cellular resolution. We showed that shortly after germination, cells in the root meristem undergo multiplanar divisions. During growth, the meristematic activity declines and associates with reduced expression of the stem cell regulator PLETHORA1 and the cell cycle genes CYCLINB1 and HISTONE H4. We also observed a basal localization of the PIN-FORMED (PIN) proteins and a decrease in auxin levels in the meristem. Using the structural layout of the root meristem and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots to form the invasive prehaustoria.


Asunto(s)
Striga , Productos Agrícolas , Germinación/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Striga/fisiología
3.
J Exp Bot ; 74(22): 7034-7044, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486862

RESUMEN

Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.


Asunto(s)
Cuscuta , Striga , Plantas , Citocininas , Interacciones Huésped-Parásitos , Raíces de Plantas
4.
Plant Cell ; 32(6): 1868-1885, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32276984

RESUMEN

Some plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or Frankia bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules. The evolutionary relationship between these nodule types has been a long-standing enigma for molecular and evolutionary biologists. Recent phylogenomic studies on nodulating and nonnodulating species in the nitrogen-fixing clade indicated that the nodulation trait has a shared evolutionary origin in all 10 lineages. However, this hypothesis faces a conundrum in that legume-type and actinorhizal-type nodules have been regarded as fundamentally different. Here, we analyzed the actinorhizal-type nodules formed by Parasponia andersonii (Rosales) and Alnus glutinosa (Fagales) and found that their ontogeny is more similar to that of legume-type nodules (Fabales) than generally assumed. We also show that in Medicago truncatula, a homeotic mutation in the co-transcriptional regulator gene NODULE ROOT1 (MtNOOT1) converts legume-type nodules into actinorhizal-type nodules. These experimental findings suggest that the two nodule types have a shared evolutionary origin.


Asunto(s)
Fagales/metabolismo , Fagales/microbiología , Medicago truncatula/microbiología , Mutación/genética , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/fisiología , Rosales/metabolismo , Rosales/microbiología
5.
Yi Chuan ; 45(11): 1074-1084, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764272

RESUMEN

The disease caused by methicillin-resistant Staphylococcus aureus (MRSA) is a global public health challenge that threatens society and patients seriously. Therefore, the molecular epidemiology and change trend of MRSA is essential for the control and treatment of diseases caused by the pathogen in their regions. To explore molecular epidemiology of MRSA in Hangzhou, we collected 162 MRSA isolates from 2012 to 2018, conducted the antimicrobial susceptibility and used polymerase chain reaction(PCR) to test the molecular typing including multilocus sequence typing (MLST), staphylococcal chromosome cassette mec (SCCmec), staphylococcal protein A (spa A) and Panton-Valentine leucocidin (PVL). All the strains was divided into community-associated MRSA (CA-MRSA) or hospital-associated MRSA (HA-MRSA). 162 MRSA isolates were divided into 16 STs and 30 spa types. The major ST type was ST5 (96/162, 59.3%) and the predominant spa type was t311 (83/162, 51.2%). Five SCCmec types were found and the most common SCCmec type was type II (101/162, 61.7%). ST5-II-t311 was the predominant MRSA clone. And the prevalence of ST5 MRSA gradually declined from 2014 to 2018 but the prevalence of ST59 MRSA significantly increased. At the same time, livestock-associated methicillin-resistant Staphylococcus aureus(LA-MRSA) ST398 and ST9 were detected. Twenty-eight isolates were PVL gene positive (28/162, 17.3%). The most prevalent PVL-positive clone was ST59-IVa-t437. Comparing with HA-MRSA, CA-MRSA had a lower probability of ST5 (9.1% vs 67.1%, P=0.000) but a higher probability of ST59 (63.6% vs 11.4%, P=0.000), not only that, it was more likely to carrying PVL-positive gene (36.4% vs 14.3%, P=0.028). In summary, the molecular types of MRSA were getting complex over time. ST5-II-t311 was the predominant clone of MRSA isolate with a downward incidence from 2014 to 2018. ST59 MRSA strains, which is thought community related strain are spreading into hospitals and has an upward incidence from 2014 to 2018.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , China/epidemiología , Humanos , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Hospitales , Pruebas de Sensibilidad Microbiana , Toxinas Bacterianas/genética , Leucocidinas/genética , Antibacterianos/farmacología , Exotoxinas/genética
6.
Development ; 146(20)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31591087

RESUMEN

Studies on the model plant Arabidopsis have led to the common view that lateral roots are exclusively formed from pericycle cells and that the latter are unique in their ability to be reprogrammed into stem cells. By analysing lateral root formation in an evolutionary context, we show that lateral root primordium formation in which cortex, endodermis and pericycle are mitotically activated, is a common and ancestral trait in seed plants, whereas the exclusive involvement of pericycle evolved in the Brassicaceae. Furthermore, the endodermis can also be reprogrammed into stem cells in some species.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , División Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis de las Plantas/genética , Organogénesis de las Plantas/fisiología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Células Madre/citología , Células Madre/metabolismo
7.
Plant Cell ; 31(8): 1751-1766, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31142581

RESUMEN

Desert plants have developed mechanisms for adapting to hostile desert conditions, yet these mechanisms remain poorly understood. Here, we describe two unique modes used by desert date palms (Phoenix dactylifera) to protect their meristematic tissues during early organogenesis. We used x-ray micro-computed tomography combined with high-resolution tissue imaging to reveal that, after germination, development of the embryo pauses while it remains inside a dividing and growing cotyledonary petiole. Transcriptomic and hormone analyses show that this developmental arrest is associated with the low expression of development-related genes and accumulation of hormones that promote dormancy and confer resistance to stress. Furthermore, organ-specific cell-type mapping demonstrates that organogenesis occurs inside the cotyledonary petiole, with identifiable root and shoot meristems and their respective stem cells. The plant body emerges from the surrounding tissues with developed leaves and a complex root system that maximizes efficient nutrient and water uptake. We further show that, similar to its role in Arabidopsis (Arabidopsis thaliana), the SHORT-ROOT homolog from date palms functions in maintaining stem cell activity and promoting formative divisions in the root ground tissue. Our findings provide insight into developmental programs that confer adaptive advantages in desert plants that thrive in hostile habitats.


Asunto(s)
Phoeniceae/metabolismo , Phoeniceae/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Phoeniceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética
8.
Zhonghua Nan Ke Xue ; 27(3): 231-235, 2021 Mar.
Artículo en Zh | MEDLINE | ID: mdl-34914305

RESUMEN

OBJECTIVE: To investigate the clinical characteristics, diagnosis, treatment and etiology of persistent Müllerian duct syndrome (PMDS). METHODS: A 3-year-old boy was diagnosed with PMDS according to the clinical manifestations and the results of ultrasonography, laboratory examinations and earlier surgical examination. We performed genetic tests for the patient and his family members, removed the infantile uterus by laparoscopic wedge hysterectomy, biopsied and descended the bilateral testes, and ligated the bilateral internal rings, followed by a retrospective analysis and review of relevant literature. RESULTS: The operation was successful. Gonad biopsy revealed testis tissue, and PMDS was confirmed by intraoperative findings and related examinations. Good bilateral testicular blood supply was found during the 6-month follow-up after surgery. Medical exome sequencing showed the AMHR2 gene c.1499G > A (p.Cys500Tyr) mutant homozygote (A/A) in the patient and his sister and mutant heterozygote (G/A) in his parents. CONCLUSIONS: Laparoscopy is definitely effective for the treatment of PMDS. In surgery, the infantile uterus should be removed in case of good blood supply to the testis, and so were the bilateral testes if they cannot be descended. The homozygous mutation in the AMHR2 gene c. 1499G > A (p. Cys500Tyr) can lead to male PMDS. Pedigree investigation may provide some evidence for possible fertility in PMDS patients.


Asunto(s)
Laparoscopía , Preescolar , Trastorno del Desarrollo Sexual 46,XY , Humanos , Masculino , Linaje , Estudios Retrospectivos
9.
New Phytol ; 224(1): 396-408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148173

RESUMEN

Plants form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which facilitates the acquisition of scarce minerals from the soil. In return, the host plants provide sugars and lipids to its fungal partner. However, the mechanism by which the AM fungi obtain sugars from the plant has remained elusive. In this study we investigated the role of potential SWEET family sugar exporters in AM symbiosis in Medicago truncatula. We show that M. truncatula SWEET1b transporter is strongly upregulated in arbuscule-containing cells compared to roots and localizes to the peri-arbuscular membrane, across which nutrient exchange takes place. Heterologous expression of MtSWEET1b in a yeast hexose transport mutant showed that it mainly transports glucose. Overexpression of MtSWEET1b in M. truncatula roots promoted the growth of intraradical mycelium during AM symbiosis. Surprisingly, two independent Mtsweet1b mutants, which are predicted to produce truncated protein variants impaired in glucose transport, exhibited no significant defects in AM symbiosis. However, arbuscule-specific overexpression of MtSWEET1bY57A/G58D , which are considered to act in a dominant-negative manner, resulted in enhanced collapse of arbuscules. Taken together, our results reveal a (redundant) role for MtSWEET1b in the transport of glucose across the peri-arbuscular membrane to maintain arbuscules for a healthy mutually beneficial symbiosis.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Simbiosis , Alelos , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Medicago truncatula/genética , Membranas/metabolismo , Modelos Biológicos , Mutagénesis Insercional/genética , Micelio/crecimiento & desarrollo , Micorrizas/citología , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/genética
10.
Development ; 142(17): 2941-50, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253408

RESUMEN

Nodules on the roots of legume plants host nitrogen-fixing Rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionarily related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems through analyses of root meristem-expressed PLETHORA genes. In nodules, MtPLETHORA 1 and 2 are preferentially expressed in cells positioned at the periphery of the meristem abutting nodule vascular bundles. Their expression overlaps with an auxin response maximum and MtWOX5, which is a marker for the root quiescent center. Strikingly, the cells in the central part of the nodule meristem have a high level of cytokinin and display MtPLETHORA 3 and 4 gene expression. Nodule-specific knockdown of MtPLETHORA genes results in a reduced number of nodules and/or in nodules in which meristem activity has ceased. Our nodule gene expression map indicates that the nodule meristem is composed of two distinct domains in which different MtPLETHORA gene subsets are expressed. Our mutant studies show that MtPLETHORA genes function redundantly in nodule meristem maintenance. This indicates that Rhizobium has recruited root developmental programs for nodule formation.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/genética , Meristema/crecimiento & desarrollo , Meristema/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/genética , Citocininas/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , Medicago truncatula/efectos de los fármacos , Meristema/efectos de los fármacos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Nódulos de las Raíces de las Plantas/efectos de los fármacos
11.
Biotechnol Lett ; 40(3): 551-559, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29349624

RESUMEN

OBJECTIVES: We evaluated the potential effects of aspirin combined with vitamin D3 on cell proliferation and apoptosis in oral cancer cells. RESULTS: Compared to the untreated control or individual drug, the combinations of aspirin and vitamin D3 significantly decreased the rates of cell proliferation by CCK-8 assay, and caused higher rates of cell apoptosis in both CAL-27 and SCC-15 cells by Annexin V-FITC apoptosis assay and flow cytometry. Remarkably, the combined treatment with aspirin and vitamin D3 significantly suppressed the expression of Bcl-2 protein and p-Erk1/2 protein, examined by western blot analysis. CONCLUSIONS: Our study demonstrates that aspirin and vitamin D3 have biological activity against two human OSCC cell lines and their activity is synergistic or additive when two drugs used in combination with therapeutic concentrations. The combination of aspirin and vitamin D3 may be an effective approach for inducing cell death in OSCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Aspirina/farmacología , Carcinoma de Células Escamosas/metabolismo , Colecalciferol/farmacología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos
12.
Eur Arch Otorhinolaryngol ; 275(2): 483-496, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29185028

RESUMEN

AIM: To evaluate the possible relevance of the IL-18-137 G>C (rs187238), IL-18-607 C>A (rs1946518) and IL-4-590 C>T (rs2243250) polymorphisms to the genetic susceptibility of head and neck cancer. METHODS: Data were retrieved from PubMed, EMBASE, Web of Science and CNKI databases, and the results were independently analysed by two reviewers using Stata 14.0 software. RESULTS: After searching for and assessing the literature, a total of thirteen studies involving 2,959 patients newly diagnosed as head and neck cancer and 3,622 controls from healthy donors were analysed. The results suggested that a strong relationship between patients and healthy controls was observed in the IL-18-137 G>C polymorphism in consistence with the result (CC vs. GG + GC: OR = 1.63, P = 0.004; CC vs. GG: OR = 1.82, P = 0.001). When stratified by cancer type, ethnicity and the source of control samples, significant and elevated risks were obtained in the genetic susceptibility to Asian patients with NPC in all genetic models and in those studies using the PCR-RFLP test method. In addition, comparable results were obtained for the IL-18-607 C>A polymorphism, especially for Asian patients with NPC. CONCLUSIONS: It should be a potential association between IL-18 variants and nasopharyngeal carcinoma. Furthermore, IL-18 gene variants might be considered as a critical role in predicting the occurrence of nasopharyngeal carcinoma in Asian population. However, the IL-4-590 C>T polymorphism does not influence the development of head and neck cancer.


Asunto(s)
Biomarcadores de Tumor , Predisposición Genética a la Enfermedad/etnología , Neoplasias de Cabeza y Cuello/genética , Interleucina-18/genética , Interleucina-4/genética , Neoplasias Nasofaríngeas/genética , Polimorfismo de Nucleótido Simple , Pueblo Asiatico/genética , Neoplasias de Cabeza y Cuello/etnología , Humanos , Neoplasias Nasofaríngeas/etnología , Riesgo
13.
Development ; 141(18): 3517-28, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25183870

RESUMEN

Legume root nodules are induced by N-fixing rhizobium bacteria that are hosted in an intracellular manner. These nodules are formed by reprogramming differentiated root cells. The model legume Medicago truncatula forms indeterminate nodules with a meristem at their apex. This organ grows by the activity of the meristem that adds cells to the different nodule tissues. In Medicago sativa it has been shown that the nodule meristem is derived from the root middle cortex. During nodule initiation, inner cortical cells and pericycle cells are also mitotically activated. However, whether and how these cells contribute to the mature nodule has not been studied. Here, we produce a nodule fate map that precisely describes the origin of the different nodule tissues based on sequential longitudinal sections and on the use of marker genes that allow the distinction of cells originating from different root tissues. We show that nodule meristem originates from the third cortical layer, while several cell layers of the base of the nodule are directly formed from cells of the inner cortical layers, root endodermis and pericycle. The latter two differentiate into the uninfected tissues that are located at the base of the mature nodule, whereas the cells derived from the inner cortical cell layers form about eight cell layers of infected cells. This nodule fate map has then been used to re-analyse several mutant nodule phenotypes. This showed, among other things, that intracellular release of rhizobia in primordium cells and meristem daughter cells are regulated in a different manner.


Asunto(s)
Linaje de la Célula/fisiología , Medicago truncatula/citología , Meristema/citología , Morfogénesis/fisiología , Nódulos de las Raíces de las Plantas/citología , Diferenciación Celular/fisiología , Simulación por Computador , Marcadores Genéticos/genética , Histocitoquímica , Medicago truncatula/microbiología , Meristema/fisiología , Nódulos de las Raíces de las Plantas/microbiología
14.
Phytother Res ; 31(9): 1376-1383, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28730733

RESUMEN

Although Radix Paeoniae Alba (RPA) has been ranked as one of the top 6 herbs used frequently to prevent and treat miscarriages clinically, there is no clear evidence regarding its safety in embryonic development. This study aims to evaluate the potential impacts of RPA on embryonic stem cells (ESCs) and pregnant mice. Cytotoxicity assays of the extract were performed in ESCs and 3T3 cells. Pregnant ICR mice were orally treated with RPA extracts at dosages of 0 (G1 group as negative controls), 2, 8 and 32 g/kg/day (G2, G3 and G4 groups) respectively from the gestation day (Gd) 6-15. On Gd 18, there was no significant difference in the IC50 values between ESCs and 3T3 cells (p > 0.05). There was no significant difference in the maternal and fetal evaluations among four groups (p > 0.05). Fetal IL-2, IL-2r, TNF-α, TNF-αr, IL-4, IL-4r, IL-10r, IL-17 and IL-17r of G4 group were significantly lower than G1 group (p < 0.05). In conclusion, RPA at dosage of 32 g/kg/day (16-folds of human daily dosage) did not cause adverse impact in cultured ESCs and pregnant mice. RPA might down-regulate fetal Th1/Th2/Th17 cytokines and receptors maybe beneficial to embryonic survival and development. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Desarrollo Embrionario/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Paeonia/química , Células 3T3 , Animales , Citocinas/metabolismo , Femenino , Feto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Embarazo , Receptores de Citocinas/metabolismo
15.
BMC Plant Biol ; 15: 260, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26503135

RESUMEN

BACKGROUND: Strigolactones are a class of plant hormones whose biosynthesis is activated in response to phosphate starvation. This involves several enzymes, including the carotenoid cleavage dioxygenases 7 (CCD7) and CCD8 and the carotenoid isomerase DWARF27 (D27). D27 expression is known to be responsive to phosphate starvation. In Medicago truncatula and rice (Oryza sativa) this transcriptional response requires the GRAS-type proteins NSP1 and NSP2; both proteins are essential for rhizobium induced root nodule formation in legumes. In line with this, we questioned whether MtNSP1-MtNSP2 dependent MtD27 regulation is co-opted in rhizobium symbiosis. RESULTS: We provide evidence that MtD27 is involved in strigolactone biosynthesis in M. truncatula roots upon phosphate stress. Spatiotemporal expression studies revealed that this gene is also highly expressed in nodule primordia and subsequently becomes restricted to the meristem and distal infection zone of a mature nodules. A similar expression pattern was found for MtCCD7 and MtCCD8. Rhizobium lipo-chitooligosaccharide (LCO) application experiments revealed that of these genes MtD27 is most responsive in an MtNSP1 and MtNSP2 dependent manner. Symbiotic expression of MtD27 requires components of the symbiosis signaling pathway; including MtDMI1, MtDMI2, MtDMI3/MtCCaMK and in part MtERN1. This in contrast to MtD27 expression upon phosphate starvation, which only requires MtNSP1 and MtNSP2. CONCLUSION: Our data show that the phosphate-starvation responsive strigolactone biosynthesis gene MtD27 is also rapidly induced by rhizobium LCO signals in an MtNSP1 and MtNSP2-dependent manner. Additionally, we show that MtD27 is co-expressed with MtCCD7 and MtCCD8 in nodule primordia and in the infection zone of mature nodules.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas , Lactonas/metabolismo , Medicago truncatula/genética , Medicago truncatula/microbiología , Rhizobium/fisiología , Teorema de Bayes , Quitina/análogos & derivados , Quitina/farmacología , Quitosano , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Medicago truncatula/efectos de los fármacos , Modelos Biológicos , Oligosacáridos , Fosfatos/deficiencia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhizobium/efectos de los fármacos , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Simbiosis/efectos de los fármacos , Simbiosis/genética
16.
BMC Cardiovasc Disord ; 15: 171, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26674589

RESUMEN

BACKGROUND: Coronary artery fistula and single coronary artery are two different rare congenital anomalies. The cases with co-existed the two anomalies are more rare. To the best of our knowledge with literature review, the coronary artery fistula between single right coronary artery and right pulmonary artery has not been previously reported. CASE PRESENTATION: In the present article, we report a Chinese patient (a 8-month-old male) who presented cyanosis when cried and heart murmur. The cardiac angiography confirmed coronary artery fistula between single coronary artery arising from the right aortic sinus and right pulmonary artery. Furthermore, the right pulmonary artery was interrupted with main pulmonary artery and the pulmonary blood supplied by single right coronary artery. Following the surgical procedure, the anomalous fistula vessel was cut and sutured. The right pulmonary artery was reconstructed to connect with main pulmonary artery. The patient had an uneventful postoperative course and discharged. Then we reviewed the related literature with Medline and Pubmed databases for further details. CONCLUSION: We believe our patient is the very particular case about coronary artery fistula combined with single coronary artery, and it is first reported with our literature review. As other coronary anomalies, coronary or aortic root angiography is the gold standard method for the diagnosis. Furthermore, early surgery is an optimal treatment in our case.


Asunto(s)
Fístula Arterio-Arterial , Anomalías de los Vasos Coronarios , Arteria Pulmonar/anomalías , Fístula Arterio-Arterial/complicaciones , Fístula Arterio-Arterial/diagnóstico , Fístula Arterio-Arterial/fisiopatología , Fístula Arterio-Arterial/cirugía , Procedimientos Quirúrgicos Cardíacos , Angiografía Coronaria , Circulación Coronaria , Anomalías de los Vasos Coronarios/complicaciones , Anomalías de los Vasos Coronarios/diagnóstico , Anomalías de los Vasos Coronarios/fisiopatología , Anomalías de los Vasos Coronarios/cirugía , Cianosis/etiología , Ecocardiografía Doppler en Color , Soplos Cardíacos/etiología , Humanos , Lactante , Masculino , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/cirugía , Circulación Pulmonar , Resultado del Tratamiento
17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 47(9): 799-805, 2013 Sep.
Artículo en Zh | MEDLINE | ID: mdl-24351559

RESUMEN

OBJECTIVE: To establish coal arsenic poisoning rat model by feeding the rats with the corn powder baked by high arsenic coal as the main raw material. METHODS: Fifty Wistar rats, healthy, were randomly divided into 5 groups according to the figures of their weights, including control group, drinking arsenic poisoning water group, low, medium and high arsenic contaminated grain group, 10 rats for each.Rats in control group and drinking arsenic poisoning water group were fed with standard feed without any arsenic containing. Rats in water group would drink 100 mg/L As2O3 solution and the rats in arsenic grain groups would be fed with the arsenic contaminated grain at the dose of 25, 50 and 100 mg/kg, respectively. The duration would last for 3 months.General situation and weight were observed. At the same time, the arsenic contents of urine, hair, liver and kidney of the rats in each group were detected, as well as the histopathology changes of liver and kidney, and the ultra structure of liver was observed. RESULTS: The arsenic contents of urine (median(min-max)) of the rats in the arsenic water group, low, medium and high arsenic grain groups were separately 3055.59 (722.43-6389.05), 635.96(367.85-1551.31), 1453.84 (593.27-5302.94) and 3101.11 (666.64-6858.61) µg/g Cr; while the arsenic contents of hair of the rats in the above groups were separately (23.07 ± 10.38), (8.87 ± 3.31), (12.43 ± 6.65) and (25.68 ± 7.16) µg/g; the arsenic contents of liver of the rats in the above groups were separately (5.68 ± 3.13), (2.64 ± 1.52), (3.89 ± 1.76) and (5.34 ± 2.78) µg/g; and the arsenic contents of kidney were separately (6.90 ± 1.94), (3.48 ± 1.96), (5.03 ± 2.08) and (7.02 ± 1.62) µg/g; which were all significantly higher than those in the control group (86.70 (49.71-106.104) µg/g Cr,(1.28 ± 0.37) µg/g, (1.01 ± 0.34) µg/g and (1.82 ± 1.09) µg/g, respectively). The difference showed significance (P < 0.05). Under electron microscope detection, we observed the reduction of mitochondrial, the blurred mitochondrial cristae, some disappeared ridges, the reduced rough endoplasmic reticulum, and irregular uneven nuclear in the liver cells of rats in arsenic contaminated grain group. The contents of aspartate transaminase (AST) and total bile acid (TBA) in medium and high arsenic contaminated grain group were respectively (196.17 ± 46.18), (212.40 ± 35.14) U/L and (11.74 ± 4.07), (19.19 ± 4.68)µmol/L, which were higher than it in the control group (separately (143.10 ± 29.13) U/L and (6.23 ± 2.95)µmol/L). The contents of glutathione-S-transferases(GST), γ-glutamyltranspeptidase (GGT)and blood urea nitrogen (BUN)in high arsenic contaminated grain group were separately (196.21 ± 47.38)U/L, (1.71 ± 0.66)U/L, (9.54 ± 1.95)mmol/L, which were higher than that in the control group ((134.93 ± 24.80 )U/L, (0.75 ± 0.36)U/L, (7.67 ± 1.02)mmol/L, respectively). The contents of cholinesterase (CHE) in low, medium and high arsenic contaminated grain group were separately (259.90 ± 52.71)U/L, (263.44 ± 66.06)U/L and (244.90 ± 36.14)U/L, the contents of total protein(TP) in rats of high arsenic contaminated grain group were (62.64 ± 5.50)g/L, which was all lower than that in the control group ((448.33 ± 59.67)U/L, (69.38 ± 4.24)g/L, respectively). The contents of TBA in high arsenic contaminated grain group ( (19.19 ± 4.68) µmol/L) was higher than that in drinking water arsenic poisoning group ((15.15 ± 2.64)µmol/L). The differences of the above indexes were all significant (P < 0.05). CONCLUSION: The results showed the arsenic poisoning rat model produced by coal-burning were successfully established.


Asunto(s)
Intoxicación por Arsénico/etiología , Carbón Mineral , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales , Contaminación de Alimentos , Animales , Animales Recién Nacidos , Femenino , Harina , Manipulación de Alimentos , Masculino , Ratas , Ratas Wistar , Zea mays
18.
Mol Plant ; 16(6): 1066-1081, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198885

RESUMEN

Vitamin A deficiency remains a severe global health issue, which creates a need to biofortify crops with provitamin A carotenoids (PACs). Expanding plant cell capacity for synthesis and storing of PACs outside the plastids is a promising biofortification strategy that has been little explored. Here, we engineered PAC formation and sequestration in the cytosol of Nicotiana benthamiana leaves, Arabidopsis seeds, and citrus callus cells, using a fungal (Neurospora crassa) carotenoid pathway that consists of only three enzymes converting C5 isopentenyl building blocks formed from mevalonic acid into PACs, including ß-carotene. This strategy led to the accumulation of significant amounts of phytoene and γ- and ß-carotene, in addition to fungal, health-promoting carotenes with 13 conjugated double bonds, such as the PAC torulene, in the cytosol. Increasing the isopentenyl diphosphate pool by adding a truncated Arabidopsis hydroxymethylglutaryl-coenzyme A reductase substantially increased cytosolic carotene production. Engineered carotenes accumulate in cytosolic lipid droplets (CLDs), which represent a novel sequestering sink for storing these pigments in plant cytosol. Importantly, ß-carotene accumulated in the cytosol of citrus callus cells was more light stable compared to compared with plastidial ß-carotene. Moreover, engineering cytosolic carotene formation increased the number of large-sized CLDs and the levels of ß-apocarotenoids, including retinal, the aldehyde corresponding to vitamin A. Collectively, our study opens up the possibility of exploiting the high-flux mevalonic acid pathway for PAC biosynthesis and enhancing carotenoid sink capacity in green and non-green plant tissues, especially in lipid-storing seeds, and thus paves the way for further optimization of carotenoid biofortification in crops.


Asunto(s)
Arabidopsis , Neurospora , beta Caroteno , Provitaminas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Gotas Lipídicas/metabolismo , Neurospora/metabolismo , Ácido Mevalónico/metabolismo , Carotenoides/metabolismo
19.
J Asian Nat Prod Res ; 13(3): 215-24, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21409682

RESUMEN

Oxymatrine (1), a component extracted from a traditional Chinese herb Sophora japonica (Sophora flavescens Ait.), has been demonstrated to have a variety of pharmacological actions. Abundant experimental evidence indicates that 1 may exert a protective effect on the cardiovascular system. This study was designed to explore the possible role of 1 against myocardial fibrosis induced by acute myocardial infarction (AMI) and its modulation on transforming growth factor beta 1 (TGF-ß(1))-Smads signaling pathways. Rats with AMI induced by ligation of left anterior descending branch were randomly assigned to receive 1 50 and 25 mg/kg intragastrically, and model group which were further compared with sham-operated group, and positive group treated with captopril. The effects of 4-week therapy with 1 starting 24 h after infarction had been investigated based on (1) hemodynamics, (2) tissue weights, (3) biochemical indicator (hydroxyproline contents in left ventricle), and (4) TGF-ß(1), TGF-ß(1) receptor (TßR(1)), Smad3, Smad4, Smad7, Col1, and Col3 expression by semi-quantitative reverse transcription PCR. Treatment with 1 significantly ameliorated hemodynamics, inhibited the expression of TßR(1) mRNA and Smad3 mRNA, and reduced the left ventricle weight/body weight. The results of this research indicated that 1 might protect against myocardial fibrosis and the mechanism may be involved in modulating TGF-ß(1)-Smads signal pathway.


Asunto(s)
Alcaloides/farmacología , Infarto del Miocardio/tratamiento farmacológico , Quinolizinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Smad/efectos de los fármacos , Sophora/química , Factor de Crecimiento Transformador beta1/metabolismo , Alcaloides/química , Animales , Medicina Tradicional China , Modelos Biológicos , Estructura Molecular , Quinolizinas/química , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Proteínas Smad/genética , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética
20.
Genes (Basel) ; 12(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068546

RESUMEN

Plants, as sessile organisms, have evolved a remarkable developmental plasticity to cope with their changing environment. When growing in hostile desert conditions, plants have to grow and thrive in heat and drought. This review discusses how desert plants have adapted their root system architecture (RSA) to cope with scarce water availability and poor nutrient availability in the desert soil. First, we describe how some species can survive by developing deep tap roots to access the groundwater while others produce shallow roots to exploit the short rain seasons and unpredictable rainfalls. Then, we discuss how desert plants have evolved unique developmental programs like having determinate meristems in the case of cacti while forming a branched and compact root system that allows efficient water uptake during wet periods. The remote germination mechanism in date palms is another example of developmental adaptation to survive in the dry and hot desert surface. Date palms have also designed non-gravitropic secondary roots, termed pneumatophores, to maximize water and nutrient uptake. Next, we highlight the distinct anatomical features developed by desert species in response to drought like narrow vessels, high tissue suberization, and air spaces within the root cortex tissue. Finally, we discuss the beneficial impact of the microbiome in promoting root growth in desert conditions and how these characteristics can be exploited to engineer resilient crops with a greater ability to deal with salinity induced by irrigation and with the increasing drought caused by global warming.


Asunto(s)
Meristema/fisiología , Phoeniceae/fisiología , Raíces de Plantas/fisiología , Sequías , Estaciones del Año , Suelo , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA