Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; 63(28): e202404713, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670925

RESUMEN

Methanol oxidation plays a central role to implement sustainable energy economy, which is restricted by the sluggish reaction kinetics due to the multi-electron transfer process accompanied by numerous sequential intermediate. In this study, an efficient cascade methanol oxidation reaction is catalyzed by single-Ir-atom catalyst at ultra-low potential (<0.1 V) with the promotion of the thermal and electrochemical integration in a high temperature polymer electrolyte membrane electrolyzer. At the elevated temperature, the electron deficient Ir site with higher methanol affinity could spontaneous catalyze the CH3OH dehydrogenation to CO under the voltage, then the generated CO and H2 was electrochemically oxidized to CO2 and proton. However, the methanol cannot thermally decompose with the voltage absence, which confirm the indispensable of the coupling of thermal and electrochemical integration for the methanol oxidation. By assembling the methanol oxidation reaction with hydrogen evolution reaction with single-Ir-atom catalysts in the anode chamber, a max hydrogen production rate reaches 18 mol gIr -1 h-1, which is much greater than that of Ir nanoparticles and commercial Pt/C. This study also demonstrated the electrochemical methanol oxidation activity of the single atom catalysts, which broadens the renewable energy devices and the catalyst design by an integration concept.

2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570706

RESUMEN

The development of efficient electrocatalysts for hydrogen evolution reactions is an extremely important area for the development of green and clean energy. In this work, a precursor material was successfully prepared via electrodeposition of two doping elements to construct a co-doped cobalt hydroxide electrocatalyst (Ru-Co(OH)2-Se). This approach was demonstrated to be an effective way to improve the performance of the hydrogen evolution reaction (HER). The experimental results show that the material exhibited a smaller impedance value and a larger electrochemically active surface area. In the HER process, the overpotential was only 109 mV at a current density of 10 mA/cm2. In addition, the doping of selenium and ruthenium effectively prevented the corrosion of the catalysts, with the (Ru-Co(OH)2-Se) material showing no significant reduction in the catalytic performance after 50 h. This synergistic approach through elemental co-doping demonstrated good results in the HER process.

3.
Molecules ; 28(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241875

RESUMEN

Electrocatalytic water splitting is a crucial area in sustainable energy development, and the development of highly efficient bifunctional catalysts that exhibit activity toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance. Co3O4 is a promising candidate catalyst, owing to the variable valence of Co, which can be exploited to enhance the bifunctional catalytic activity of HER and OER through rational adjustments of the electronic structure of Co atoms. In this study, we employed a plasma-etching strategy in combination with an in situ filling of heteroatoms to etch the surface of Co3O4, creating abundant oxygen vacancies, while simultaneously filling them with nitrogen and sulfur heteroatoms. The resulting N/S-VO-Co3O4 exhibited favorable bifunctional activity for alkaline electrocatalytic water splitting, with significantly enhanced HER and OER catalytic activity compared to pristine Co3O4. In an alkaline overall water-splitting simulated electrolytic cell, N/S-VO-Co3O4 || N/S-VO-Co3O4 showed excellent overall water splitting catalytic activity, comparable to noble metal benchmark catalysts Pt/C || IrO2, and demonstrated superior long-term catalytic stability. Additionally, the combination of in situ Raman spectroscopy with other ex situ characterizations provided further insight into the reasons behind the enhanced catalyst performance achieved through the in situ incorporation of N and S heteroatoms. This study presents a facile strategy for fabricating highly efficient cobalt-based spinel electrocatalysts incorporated with double heteroatoms for alkaline electrocatalytic monolithic water splitting.

4.
Angew Chem Int Ed Engl ; 62(49): e202313954, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37867149

RESUMEN

Due to the robust oxidation conditions in strong acid oxygen evolution reaction (OER), developing an OER electrocatalyst with high efficiency remains challenging in polymer electrolyte membrane (PEM) water electrolyzer. Recent theoretical research suggested that reducing the coordination number of Ir-O is feasible to reduce the energy barrier of the rate-determination step, potentially accelerating the OER. Inspired by this, we experimentally verified the Ir-O coordination number's role at model catalysts, then synthesized low-coordinated IrOx nanoparticles toward a durable PEM water electrolyzer. We first conducted model studies on commercial rutile-IrO2 using plasma-based defect engineering. The combined in situ X-ray absorption spectroscopy (XAS) analysis and computational studies clarify why the decreased coordination numbers increase catalytic activity. Next, under the model studies' guidelines, we explored a low-coordinated Ir-based catalyst with a lower overpotential of 231 mV@10 mA cm-2 accompanied by long durability (100 h) in an acidic OER. Finally, the assembled PEM water electrolyzer delivers a low voltage (1.72 V@1 A cm-2 ) as well as excellent stability exceeding 1200 h (@1 A cm-2 ) without obvious decay. This work provides a unique insight into the role of coordination numbers, paving the way for designing Ir-based catalysts for PEM water electrolyzers.

5.
BMC Gastroenterol ; 22(1): 454, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371178

RESUMEN

BACKGROUND: Transient receptor potential (TRP) channels have high permeability to Ca2+ ions because they are non-selective ion channels. TRP channels have been implicated in tumor onset and progression, proliferation, and migration in recent years. However, the prognostic value of genes related to TRP and their specific mechanism in pancreatic adenocarcinoma (PAAD) are yet to be understood. METHODS: Public databases such as TCGA and GEO were used to retrieve data on gene expression and clinical information of patients with pancreatic adenocarcinoma for our study. ConsensusClusterPlus package was used for unsupervised clustering analysis. The microenvironment cell population (MCP)-counter approach was employed to measure the immune cells infiltration status. The Pearson correlation was performed to identify TRP-associated lncRNAs. RESULTS: Initially, we separated PAAD patients into three clusters depending on TRP-related genes, and of the three clusters, cluster B showed the least immune cell infiltration, which was correlated with poor prognosis. Moreover, GSVA enrichment analysis further revealed that cluster A was subjected to a considerable enrichment in carcinogenic signaling pathways, whereas cluster C was enriched in immune-related pathways. Then, using TRP-associated lncRNAs as a starting point, we constructed a prognostic risk model for PAAD patients that could efficiently predict their prognosis. Further, GSEA revealed that cancer-related pathways, for instance, the cell cycle, p53 signaling pathway, etc. were considerably enriched in the high-risk group. In addition, we looked into the link between the prognostic model and the immunological microenvironment. Lower cytotoxic lymphocytes, NK cells, CD8 T cells, and endothelial cells infiltration were found to be associated with high risk using the MCP-counter algorithm. The expression of CD274, POLE2, MCM6, and LOXL2 was also found to be higher in the high-risk group. TMB was also considerably greater in high-risk individuals, indicating that immune checkpoint inhibitors (ICIs) therapy may benefit them more. Lastly, qRT-PCR further confirmed the differential expression of these prognostic TRP-associated lncRNAs, indicating that these lncRNAs play an imperative role in PAAD tumorigenesis. CONCLUSION: TRP family genes may represent a new class of candidate molecular markers of the occurrence and progression of PAAD. Risk models based on TRP-associated lncRNAs could provide important new references for immunotargeted therapy of pancreatic adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Pancreáticas/patología , Pronóstico , Adenocarcinoma/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
6.
Angew Chem Int Ed Engl ; 61(51): e202214794, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36278261

RESUMEN

Designing metal-organic framework (MOF)-based catalysts with superior oxygen evolution reaction (OER) activity and robust durability simultaneously is highly required yet very challenging due to the limited intrinsic activity and their elusive evolution under harsh OER conditions. Herein, a steady self-reconstructed MOF heterojunction is constructed via redox electrochemistry and topology-guided strategy. Thanks to the inhibiting effect from hydrogen bonds of Ni-BDC-1 (BDC=1,4-benzenedicarboxylic acid), the obatained MOF heterojunction shows greatly improved OER activity with low overpotential of 225 mV at 10 mA cm-2 , relative to the totally reconstructed Ni-BDC-3 (332 mV). Density function theory calculations reveal that the formed built-in electric field in the MOF heterojunction remarkably optimizes the ad/desorption free energy of active Ni sites. Moreover, such MOF heterojunction shows superior durability attributed to the shielding effect of the surface-evolved NiOOH coating.

7.
J Am Chem Soc ; 142(28): 12087-12095, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538073

RESUMEN

The exact role of a defect structure on transition metal compounds for electrocatalytic oxygen evolution reaction (OER), which is a very dynamic process, remains unclear. Studying the structure-activity relationship of defective electrocatalysts under operando conditions is crucial for understanding their intrinsic reaction mechanism and dynamic behavior of defect sites. Co3O4 with rich oxygen vacancy (VO) has been reported to efficiently catalyze OER. Herein, we constructed pure spinel Co3O4 and VO-rich Co3O4 as catalyst models to study the defect mechanism and investigate the dynamic behavior of defect sites during the electrocatalytic OER process by various operando characterizations. Operando electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) implied that the VO could facilitate the pre-oxidation of the low-valence Co (Co2+, part of which was induced by the VO to balance the charge) at a relatively lower applied potential. This observation confirmed that the VO could initialize the surface reconstruction of VO-Co3O4 prior to the occurrence of the OER process. The quasi-operando X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption fine structure (XAFS) results further demonstrated the oxygen vacancies were filled with OH• first for VO-Co3O4 and facilitated pre-oxidation of low-valence Co and promoted reconstruction/deprotonation of intermediate Co-OOH•. This work provides insight into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process. The current finding would motivate the community to focus more on the dynamic behavior of defect electrocatalysts.

8.
Small ; 16(14): e1906867, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32162756

RESUMEN

Cobalt pnictides show good catalytic activity and stability on oxygen evolution reaction (OER) behaviors in a strong alkaline solution. Identifying the intrinsic composition/structure-property relationship of the oxide layer on the cobalt pnictides is critical to design better and cheaper electrocatalysts for the commercial viability of OER technologies. In this work, the restructured oxide layer on the cobalt pnictides and its effect on the activity and mechanism for OER is systematically analyzed. In-situ electrochemical impedance spectroscopy (EIS) and near edge x-ray absorption fine structure (NEXAFS) spectra indicate that a higher OER performance of cobalt pnictides than Co3 O4 is attributed to the more structural disorder and oxygen defect sites in the cobalt oxide layer evolved from cobalt pnictides. Using angle resolved x-ray photoelectron spectroscopy (AR-XPS) further demonstrates that the oxygen defect sites mainly concentrate on the subsurface of cobalt oxide layer. The current study demonstrated promising opportunities for further enhancing the OER performance of cobalt-based electrocatalysts by controlling the subsurface defects of the restructured active layer.

9.
Small ; 15(50): e1904903, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31729159

RESUMEN

Cobalt oxides as efficient oxygen evolution reaction (OER) electrocatalysts have received much attention because of their rich reserves and cheap cost. There are two common cobalt oxides, Co3 O4 (spinel phase, stable but poor intrinsic activity) and CoO (rocksalt phase, active but easily be oxidatized). Constructing Co3 O4 /CoO heterophase can inherit both characteristic features of each component and form a heterophase interface facilitating charge transfer, which is believed to be an effective strategy in designing excellent electrocatalysts. Herein, an atomic arrangement engineering strategy is applied to improve electrocatalytic activity of Co3 O4 for the OER. With the presence of oxygen vacancies, cobalt atoms at tetrahedral sites in Co3 O4 can more easily diffuse into interstitial octahedral sites to form CoO phase structure as revealed by periodic density functional theory computations. The Co3 O4 /CoO spinel/rocksalt heterophase can be in situ fabricated at the atomic scale in plane. The overpotential to reach 10 mA cm-2 of Co3 O4 /CoO is 1.532 V, which is 92 mV smaller than that of Co3 O4 . Theoretical calculations confirm that the excellent electrochemical activity is corresponding to a decline in average p-state energy of adsorbed-O on the Co3 O4 /CoO heterophase interface. The reaction Gibbs energy barrier has been significantly decreased with the construction of the heterophase interface.

10.
Angew Chem Int Ed Engl ; 58(4): 1019-1024, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30479055

RESUMEN

Electrocatalysis is dominated by reaction at the solid-liquid-gas interface; surface properties of electrocatalysts determine the electrochemical behavior. The surface charge of active sites on catalysts modulate adsorption and desorption of intermediates. However, there is no direct evidence to bridge surface charge and catalytic activity of active sites. Defects (active sites) were created on a HOPG (highly oriented pyrolytic graphite) surface that broke the intrinsic sp2 -hybridization of graphite by plasma, inducing localization of surface charge onto defective active sites, as shown by scanning ion conductance microscopy (SICM) and Kelvin probe force microscopy (KPFM). An electrochemical test revealed enhanced intrinsic activity by the localized surface charge. DFT calculations confirmed the relationship between surface charge and catalytic activity. This work correlates surface charge and catalytic activity, providing insights into electrocatalytic behavior and guiding the design of advanced electrocatalysts.

11.
Nanotechnology ; 28(16): 165402, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28319036

RESUMEN

Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm-2. The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec-1 than pristine Co3O4 nanosheets (234 mV dec-1). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

12.
Angew Chem Int Ed Engl ; 55(17): 5277-81, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26990905

RESUMEN

Co3 O4 , which is of mixed valences Co(2+) and Co(3+) , has been extensively investigated as an efficient electrocatalyst for the oxygen evolution reaction (OER). The proper control of Co(2+) /Co(3+) ratio in Co3 O4 could lead to modifications on its electronic and thus catalytic properties. Herein, we designed an efficient Co3 O4 -based OER electrocatalyst by a plasma-engraving strategy, which not only produced higher surface area, but also generated oxygen vacancies on Co3 O4 surface with more Co(2+) formed. The increased surface area ensures the Co3 O4 has more sites for OER, and generated oxygen vacancies on Co3 O4 surface improve the electronic conductivity and create more active defects for OER. Compared to pristine Co3 O4 , the engraved Co3 O4 exhibits a much higher current density and a lower onset potential. The specific activity of the plasma-engraved Co3 O4 nanosheets (0.055 mA cm(-2) BET at 1.6 V) is 10 times higher than that of pristine Co3 O4 , which is contributed by the surface oxygen vacancies.

13.
Water Res ; 258: 121817, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810598

RESUMEN

Electrochemical uranium extraction (EUE) from seawater is a very promising strategy, but its practical application is hindered by the high potential for electrochemical system, as well as the low selectivity, efficiency, and poor stability of electrode. Herein, we developed creatively a low potential strategy for persistent uranium recovery by electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites coupled with indirect reduction of uranium, finally achieving high selectivity, efficient and persistent uranium recovery. As-designed titanium dioxide rich in oxygen vacancies (TiO2-VO) electrode displayed an EUE efficiency of ∼99.9 % within 180 min at a low potential of 0.09 V in simulated seawater with uranium of 5∼20 ppm. Moreover, the TiO2-VO electrode also showed high selectivity (89.9 %) to uranium, long-term cycling stability and antifouling activity in natural seawater. The excellent EUE property was attributed to the fact that electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites enhanced EUE cycling process and achieved persistent uranium recovery. The continuous regeneration of oxygen vacancies not only reduced the adsorption energy of U(VI)O22+ but also serve as a storage and transportation channel for electrons, accelerating electron transfer from Ti(III) to U(VI) at solid-liquid interface and promoting EUE kinetic rate.


Asunto(s)
Oxígeno , Agua de Mar , Titanio , Uranio , Uranio/química , Titanio/química , Oxígeno/química , Agua de Mar/química , Electrodos , Electroquímica , Técnicas Electroquímicas , Contaminantes Radiactivos del Agua/química
14.
J Colloid Interface Sci ; 668: 502-511, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691960

RESUMEN

The demand for clean energy sources has driven focus towards advanced electrochemical systems. However, the sluggish kinetics of the oxygen evolution reaction (OER) constrain the energy conversion efficiency of relevant devices. Herein, a one-step method is reported to grow oxygen vacancies (Vo) rich NiFeAg layered double hydroxides nanoclusters on carbon cloth (Vo-NiFeAg-LDH/CC) for serving as the self-supporting electrode to catalyze OER. The OER performance of Vo-NiFeAg-LDH/CC has been remarkably enhanced through Ag and Vo co-modification compared with pristine NiFe-LDH, achieving a low Tafel slope of 49.7 mV dec-1 in 1 m KOH solution. Additionally, the current density of Vo-NiFeAg-LDH/CC is 3.23 times higher than that of the state-of-art IrO2 at 2 V under an alkaline flow electrolyzer setup. Theoretical calculations and experimental results collectively demonstrate that Ag dopant and Vo strengthen the O* adsorption with active sites, further promoting the deprotonation step from OH* to O* and accelerating the catalytic reaction. In a word, this work clarifies the structural correlation and synergistic mechanism of Ag dopant and Vo, providing valuable insights for the rational design of catalyst for renewable energy applications.

15.
Comb Chem High Throughput Screen ; 26(13): 2358-2371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36918789

RESUMEN

BACKGROUND: The limited efficacy of chemotherapy and immunotherapy for pancreatic cancer is thought to be largely influenced by the surrounding cancer microenvironment. The hypoxic microenvironment caused by insufficient local blood supply is very important. However, the method to assess the level of hypoxia in the microenvironment of pancreatic cancer (PC) remains unclear. METHODS: In our research, we downloaded transcriptomic and clinicopathological data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A prognostic model was developed using univariate and multivariate Cox regression. The ConsensuClusterPlus R package was used to consistently cluster PC samples through unsupervised clustering. Gene set variation analysis (GSVA) was performed to identify the different functional phenotypes. The CIBERSORT evaluated the infiltration status of immune cells. qRT-PCR was performed to detect the expression of genes in PC cells and tissues. RESULTS: A preliminary risk model was developed to reflect the hypoxic environment of pancreatic cancer. We found that a high hypoxia risk score indicated poor long-term survival and the presence of an immunosuppressive microenvironment. In addition, based on prognostic hypoxia-related genes, 177 PC samples were divided into two subtypes. Compared with cluster 2, cluster 1 was defined as the "hypoxic subgroup". The infiltration of CD8 T cells, activated memory CD4 T cells, naive B cells, memory B cells, plasma cells, and neutrophils were lower in cluster 1, suggesting that there was significant immunosuppression in cluster 1. Beyond that, we constructed a ceRNA regulatory network composed of differentially expressed lncRNA, miRNA, and mRNA. LSAMPAS1/ hsa-miR-129-5p/S100A2 has been identified as a key ceRNA network that regulates the hypoxic environment and the prognosis of PC. Notably, in our study, qRT-PCR revealed the relative expression of LSAMP-AS1 and S100A2 was significantly upregulated in PC cells and tissue. CONCLUSION: The hypoxia-related prognostic risk model and core ceRNA network established in our study will provide a new perspective for exploring the carcinogenic mechanism and potential therapeutic targets of pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , ARN Largo no Codificante , Hipoxia Tumoral , Humanos , Análisis por Conglomerados , MicroARNs/genética , Neoplasias Pancreáticas/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
16.
Front Oncol ; 12: 770005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712482

RESUMEN

Pancreatic cancer (PC) has a poor prognosis, which is attributable to its high aggressiveness and lack of effective therapies. Although immunotherapy has been used for the treatment of various tumor, its efficacy in pancreatic cancer is not satisfactory. As a caspase-1-dependent programmed cell death, pyroptosis s involved in the pathological process of many tumors. Nevertheless, the vital role of the pyroptosis-related gene (PRG) in PC remains unknown. In this study, univariate COX regression was performed for 33 pyroptosis-related genes. Based on these prognosis-related PRGs, all PC patients in the Cancer Genome Atlas (TCGA) database were divided into four subtypes. Then, pyroptosis score (PP-score) was established to quantify pyroptosis level for individual PC patients using principal component analysis (PCA) algorithms. Assessment of pyroptosis level within individual PC patients may predict tumor classification and patient prognosis. Finally, a signature was constructed in TCGA and verified in ICGC. In addition, immunocheckpoint analysis revealed the possibility that the low-risk group would benefit more from immunocheckpoint therapy. Taken together, pyroptosis-related genes play a significant role in tumor immunotherapy and can be utilized to predict the prognosis of PC patients.

17.
Front Chem ; 10: 1064752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505745

RESUMEN

Producing hydrogen through water electrolysis is one of the most promising green energy storage and conversion technologies for the long-term development of energy-related hydrogen technologies. MoS2 is a very promising electrocatalyst which may replace precious metal catalysts for the hydrogen evolution reaction (HER). In this work, doughty-electronegative heteroatom defects (halogen atoms such as chlorine, fluorine, and nitrogen) were successfully introduced in MoS2 by using a large-scale, green, and simple ball milling strategy to alter its electronic structure. The physicochemical properties (morphology, crystallization, chemical composition, and electronic structure) of the doughty-electronegative heteroatom-induced defective MoS2 (N/Cl-MoS2) were identified using SEM, TEM, Raman, XRD, and XPS. Furthermore, compared with bulk pristine MoS2, the HER activity of N/Cl-MoS2 significantly increased from 442 mV to 280 mV at a current of 10 mA cm-2. Ball milling not only effectively reduced the size of the catalyst material, but also exposed more active sites. More importantly, the introduced doughty-electronegative heteroatom optimized the electronic structure of the catalyst. Therefore, the doughty-electronegative heteroatom induced by mechanical ball milling provides a useful reference for the large-scale production of green, efficient, and low-cost catalyst materials.

18.
Front Immunol ; 13: 1111246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700197

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and CD4+ T lymphocytes can inhibit hepatocarcinogenesis and mediate tumor regression. However, few studies have focused on the prognostic power of CD4+ Tconv-related lncRNAs in HCC patients. Method: We obtained data from TCGA and GEO databases and identified CD4+Tconv-related lncRNAs in HCC. The risk score was constructed using lasso regression and the model was validated using two validation cohorts. The RS was also assessed in different clinical subgroups, and a nomogram was established to further predict the patients' outcomes. Furthermore, we estimated the immune cell infiltration and cancer-associated fibroblasts (CAFs) through TIMER databases and assessed the role of RS in immune checkpoint inhibitors response. Results: We constructed a CD4+ Tconv-related lncRNAs risk score, including six lncRNAs (AC012073.1, AL031985.3, LINC01060, MKLN1-AS, MSC-AS1, and TMCC1-AS1), and the RS had good predictive ability in validation cohorts and most clinical subgroups. The RS and the T stage were included in the nomogram with optimum prediction and the model had comparable OS prediction power compared to the AJCC. Patients in the high-risk group had a poor immune response phenotype, with high infiltrations of macrophages, CAFs, and low infiltrations of NK cells. Immunotherapy and chemotherapy response analysis indicated that low-risk group patients had good reactions to immune checkpoint inhibitors. Conclusion: We constructed and validated a novel CD4+ Tconv-related lncRNAs RS, with the potential predictive value of HCC patients' survival and immunotherapy response.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Pronóstico , Linfocitos T CD4-Positivos
19.
J Phys Chem Lett ; 13(35): 8386-8396, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36047673

RESUMEN

Defect engineering is an important means of improving the electrochemical performance of the Co3O4 electrocatalyst in the oxygen evolution reaction (OER). In this study, operando soft X-ray absorption spectroscopy (SXAS) is used to explore the electronic structure of Co3O4 under OER for the first time. The defect-rich Co3O4 (D-Co3O4) has a Co2.45+ state with Co2+ at both octahedral (Oh) and tetrahedral (Td) sites and Co3+ at Oh, whereas Co3O4 has Co2.6+ with Co2+ and Co3+ at Td and Oh sites, respectively. SXAS reveals that upon increasing the voltage, the Co2+ in D-Co3O4 is converted to low-spin Co3+, some of which is further converted to low-spin Co4+; most Co2+ in Co3O4 is converted to Co3+ but rarely to Co4+. When the voltage is switched off, Co4+ intermediates quickly disappear. These findings reveal Co(Oh) in D-Co3O4 can be rapidly converted to active low-spin Co4+ under operando conditions, which cannot be observed by ex situ XAS.

20.
RSC Adv ; 11(43): 26534-26545, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35480002

RESUMEN

Efficient charge separation, in particular bulk charge separation (BCS), is one of the most critical factors in determining the performance of photoelectrochemical (PEC) water-splitting. The BCS enhancement of CdS/BaTiO3 (CdS/BTO) nanowires (NWs) in photoelectrocatalysis has rarely been reported. This paper describes a remarkable PEC properties promotion of the CdS/BTO NWs, which is confirmed to be a result of the enhanced BCS efficiency induced by the ferroelectric polarization. The vertical arrays of BTO NWs endow fast transfer of carriers. Meanwhile, CdS is decorated uniformly on the surface of BTO NWs, which ensures a wide range of light absorption. After two negative polarizations, the CdS/BTO NWs have successfully obtained a remarkable photocurrent density, achieving 459.53 µA cm-2 at 1.2 V(vs.RHE), which is 2.86 times that of the unpolarized sample. However, after two positive polarizations, the photocurrent density dramatically decreases to 40.18 µA cm-2 at 1.2 V(vs.RHE), which is merely 0.25 times the original value. More importantly, the photocurrent density reaches up to a prominent value of -71.09 mA cm-2 at -0.8 V(vs.RHE) after two successive negative polarizations, which is a 40.87 mA cm-2 enhancement with respect to the sample without poling. Significantly, at -0.8 V(vs.RHE), the BCS efficiency of the CdS/BTO NWs is as high as 91.87% after two negative polarizations. The effects of ferroelectric polarization on the PEC performance of CdS/BTO NWs have been systematically studied. The results demonstrate that ferroelectric polarization, especially negative polarization, results in an internal electric field to tune band bending of CdS/BTO NWs, thus prominently enhancing the PEC performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA