Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(6): 2740-2758, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864759

RESUMEN

In CRISPR/Cas9 genome editing, the tight and persistent target binding of Cas9 provides an opportunity for efficient genetic and epigenetic modification on genome. In particular, technologies based on catalytically dead Cas9 (dCas9) have been developed to enable genomic regulation and live imaging in a site-specific manner. While post-cleavage target residence of CRISPR/Cas9 could alter the pathway choice in repair of Cas9-induced DNA double strand breaks (DSBs), it is possible that dCas9 residing adjacent to a break may also determine the repair pathway for this DSB, providing an opportunity to control genome editing. Here, we found that loading dCas9 onto a DSB-adjacent site stimulated homology-directed repair (HDR) of this DSB by locally blocking recruitment of classical non-homologous end-joining (c-NHEJ) factors and suppressing c-NHEJ in mammalian cells. We further repurposed dCas9 proximal binding to increase HDR-mediated CRISPR genome editing by up to 4-fold while avoiding exacerbation of off-target effects. This dCas9-based local inhibitor provided a novel strategy of c-NHEJ inhibition in CRISPR genome editing in place of small molecule c-NHEJ inhibitors, which are often used to increase HDR-mediated genome editing but undesirably exacerbate off-target effects.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Animales , Reparación del ADN por Unión de Extremidades , Reparación del ADN por Recombinación , Edición Génica/métodos , ADN/genética , Reparación del ADN , Mamíferos/genética
2.
Br J Cancer ; 131(3): 430-443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877108

RESUMEN

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.


Asunto(s)
Cromatina , Daño del ADN , Proteína Quinasa Activada por ADN , Doxorrubicina , Proteínas de la Membrana , Mieloma Múltiple , Nucleotidiltransferasas , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ratones , Animales , Transducción de Señal/efectos de los fármacos
3.
Mol Cell ; 57(4): 648-661, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25661488

RESUMEN

Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3ß leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(ß-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Carcinogénesis/genética , Citoplasma/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Ligasas SKP Cullina F-box/fisiología , Alineación de Secuencia
4.
Nano Lett ; 20(5): 3943-3955, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32243175

RESUMEN

Black phosphorus (BP)-based nanomaterials have distinguished advantages and potential applications in various biomedical fields. However, their biological effects in physiological systems remain largely unexplored. Here, we systematically revealed a reactive oxygen species (ROS)-mediated mechanism for the selective killing of cancer cells by BP-based nanosheets. The treatment with BP-based materials can induce higher levels of ROS in cancer cells than in normal cells, leading to significant changes in the cytoskeleton, cell cycle arrest, DNA damage, and apoptosis in tumor cell lines. We revealed that the decreased superoxide dismutase activity by lipid peroxides could be an essential mechanism of the selectively higher ROS generation induced by BP-based nanosheets in cancer cells. In addition, the selective killing effect only occurred within a certain dosage range (named "SK range" in this study). Once exceeding the SK range, BP-based materials could also induce a high ROS production in normal tissues, leading to detectable DNA damage and pathological characteristics in normal organs and raising safety concerns. These findings not only shed light on a new mechanism for the selective killing of cancer cells by BP-based materials but also provide deep insights into the safe use of BP-based therapies.


Asunto(s)
Daño del ADN , Fósforo/farmacología , Especies Reactivas de Oxígeno/química , Línea Celular Tumoral , Humanos
5.
Nucleic Acids Res ; 45(18): 10614-10633, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28977657

RESUMEN

Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Histonas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Secuencia de Bases , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Línea Celular , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Nucleótidos/análisis , Eliminación de Secuencia
6.
PLoS Genet ; 12(10): e1006230, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27798638

RESUMEN

DNA double-strand breaks (DSB) are very harmful lesions that can generate genome rearrangements. In this study, we used intrachromosomal reporters to compare both the efficiency and accuracy of end-joining occurring with close (34 bp apart) vs. distant DSBs (3200 bp apart) in human fibroblasts. We showed that a few kb between two intrachromosomal I-SceI-induced DSBs are sufficient to foster deletions and capture/insertions at the junction scar. Captured sequences are mostly coupled to deletions and can be partial duplications of the reporter (i.e., sequences adjacent to the DSB) or insertions of ectopic chromosomal sequences (ECS). Interestingly, silencing 53BP1 stimulates capture/insertions with distant but not with close double-strand ends (DSEs), although deletions were stimulated in both case. This shows that 53BP1 protects both close and distant DSEs from degradation and that the association of unprotection with distance between DSEs favors ECS capture. Reciprocally, silencing CtIP lessens ECS capture both in control and 53BP1-depleted cells. We propose that close ends are immediately/rapidly tethered and ligated, whereas distant ends first require synapsis of the distant DSEs prior to ligation. This "spatio-temporal" gap gives time and space for CtIP to initiate DNA resection, suggesting an involvement of single-stranded DNA tails for ECS capture. We therefore speculate that the resulting single-stranded DNA copies ECS through microhomology-mediated template switching.


Asunto(s)
Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Proteínas Nucleares/genética , Recombinación Genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Emparejamiento Cromosómico/genética , Reparación del ADN por Unión de Extremidades/genética , ADN de Cadena Simple/genética , Endodesoxirribonucleasas , Fibroblastos , Silenciador del Gen , Genoma Humano , Humanos
7.
Genes Dev ; 25(7): 685-700, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21406551

RESUMEN

In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN , Proteínas Nucleares/metabolismo , Radiación Ionizante , Recombinación Genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Inestabilidad Cromosómica , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Células HEK293 , Células HeLa , Chaperonas de Histonas , Humanos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética
8.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 594-602, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27151295

RESUMEN

Cellular response to DNA double-strand breaks (DSBs), the most deleterious type of DNA damage, is highly influenced by higher-order chromatin structure in eukaryotic cells. Compared with euchromatin, the compacted structure of heterochromatin not only protects heterochromatic DNA from damage, but also adds an extra layer of control over the response to DSBs occurring in heterochromatin. One key step in this response is the decondensation of heterochromatin structure. This decondensation process facilitates the DNA damage signaling and promotes proper heterochromatic DSB repair, thus helping to prevent instability of heterochromatic regions of genomes. This review will focus on the functions of the ataxia telangiectasia mutated (ATM) signaling cascade involving ATM, heterochromatin protein 1 (HP1), Krüppel-associated box (KRAB)-associated protein-1 (KAP-1), tat-interacting protein 60 (Tip60), and many other protein factors in DSB-induced decondensation of heterochromatin and subsequent repair of heterochromatic DSBs. As some subsets of DSBs may be repaired in heterochromatin independently of the ATM signaling, a possible repair model is also proposed for ATM-independent repair of these heterochromatic DSBs.


Asunto(s)
Daño del ADN , Heterocromatina/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Transducción de Señal
9.
J Biol Chem ; 288(10): 7086-95, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23355489

RESUMEN

Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Recombinación Homóloga , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromonas/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/efectos de la radiación , Endodesoxirribonucleasas/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Proteínas/metabolismo , ARN no Traducido , Radiación Ionizante , Serina/metabolismo , Proteínas Supresoras de Tumor/genética
10.
Mutat Res ; 750(1-2): 5-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23916969

RESUMEN

Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Histonas/fisiología , Animales , Sitios de Unión , Cromatina/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Modelos Genéticos , Proteína 1 de Unión al Supresor Tumoral P53
11.
Mol Ther Nucleic Acids ; 34: 102072, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38028195

RESUMEN

Paired SpCas9 nickases (SpCas9n) are an effective strategy to reduce off-target effect in genome editing. However, this approach is not efficient with 3'-overhanging ends, limiting its applications. In order to expand the utility of paired SpCas9n in genome editing, we tested the effect of the TREX2 3'-5' exonuclease on repair of 3'-overhanging ends. We found ectopic overexpression of Trex2 stimulates the efficiency of paired SpCas9n in genome disruption with 3'-overhanging ends up to 400-fold with little stimulation of off-target editing. TREX2 overexpressed preferentially deletes entire 3' overhangs but has no significant effect on 5' overhangs. Trex2 overexpression also stimulates genome disruption by paired SpCas9n that potentially generate short 3'-overhanging ends at overlapping SpCas9n target sites, suggesting sequential nicking of overlapping target sites by SpCas9n. This approach is further simplified with improved efficiency and safety by fusion of TREX2 and particularly its DNA-binding-deficient mutant to SpCas9n. Junction analysis at overlapping targets revealed the different extent of end resection of 3' single-stranded DNA (ssDNA) by free TREX2 and TREX2 fused to SpCas9n. SpCas9n-TREX2 fusion is more convenient and safer than overexpression of free TREX2 to process 3'-overhanging ends for efficient genome disruption by paired SpCas9n, allowing practical use of this TREX2-based strategy in genome editing.

12.
Genome Med ; 15(1): 80, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803452

RESUMEN

BACKGROUND: Primary liver cancer has significant intratumor genetic heterogeneity (IGH), which drives cancer evolution and prevents effective cancer treatment. CRISPR/Cas9-induced mouse liver cancer models can be used to elucidate how IGH is developed. However, as CRISPR/Cas9 could induce chromothripsis and extrachromosomal DNA in cells in addition to targeted mutations, we wondered whether this effect contributes to the development of IGH in CRISPR/Cas9-induced mouse liver cancer. METHODS: CRISPR/Cas9-based targeted somatic multiplex-mutagenesis was used to target 34 tumor suppressor genes (TSGs) for induction of primary liver tumors in mice. Target site mutations in tumor cells were analyzed and compared between single-cell clones and their subclones, between different time points of cell proliferation, and between parental clones and single-cell clones derived from mouse subcutaneous allografts. Genomic instability and generation of extrachromosomal circular DNA (eccDNA) was explored as a potential mechanism underlying the oscillation of target site mutations in these liver tumor cells. RESULTS: After efficiently inducing autochthonous liver tumors in mice within 30-60 days, analyses of CRISPR/Cas9-induced tumors and single-cell clones derived from tumor nodules revealed multiplexed and heterogeneous mutations at target sites. Many target sites frequently displayed more than two types of allelic variations with varying frequencies in single-cell clones, indicating increased copy number of these target sites. The types and frequencies of targeted TSG mutations continued to change at some target sites between single-cell clones and their subclones. Even the proliferation of a subclone in cell culture and in mouse subcutaneous graft altered the types and frequencies of targeted TSG mutations in the absence of continuing CRISPR/Cas9 genome editing, indicating a new source outside primary chromosomes for the development of IGH in these liver tumors. Karyotyping of tumor cells revealed genomic instability in these cells manifested by high levels of micronuclei and chromosomal aberrations including chromosomal fragments and chromosomal breaks. Sequencing analysis further demonstrated the generation of eccDNA harboring targeted TSG mutations in these tumor cells. CONCLUSIONS: Small eccDNAs carrying TSG mutations may serve as an important source supporting intratumor heterogeneity and tumor evolution in mouse liver cancer induced by multiplexed CRISPR/Cas9.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Hepáticas , Ratones , Animales , Neoplasias Hepáticas/genética , Edición Génica , Mutación , Genes Supresores de Tumor , ADN , Inestabilidad Genómica , ADN Circular
13.
Nat Commun ; 13(1): 4285, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879372

RESUMEN

Analysis of human cancer genome sequences has revealed specific mutational signatures associated with BRCA1-deficient tumors, but the underlying mechanisms remain poorly understood. Here, we show that one-ended DNA double strand breaks (DSBs) converted from CRISPR/Cas9-induced nicks by DNA replication, not two-ended DSBs, cause more characteristic chromosomal aberrations and micronuclei in Brca1-deficient cells than in wild-type cells. BRCA1 is required for efficient homologous recombination of these nick-converted DSBs and suppresses bias towards long tract gene conversion and tandem duplication (TD) mediated by two-round strand invasion in a replication strand asymmetry. However, aberrant repair of these nick-converted one-ended DSBs, not that of two-ended DSBs in Brca1-deficient cells, generates mutational signatures such as small indels with microhomology (MH) at the junctions, translocations and small MH-mediated TDs, resembling those in BRCA1-deficient tumors. These results suggest a major contribution of DNA nicks to mutational signatures associated with BRCA1 deficiency in cancer and the underlying mechanisms.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Proteína BRCA1/genética , Reparación del ADN , Replicación del ADN/genética , Conversión Génica , Recombinación Homóloga , Humanos
14.
Genome Biol ; 23(1): 165, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915475

RESUMEN

BACKGROUND: Due to post-cleavage residence of the Cas9-sgRNA complex at its target, Cas9-induced DNA double-strand breaks (DSBs) have to be exposed to engage DSB repair pathways. Target interaction of Cas9-sgRNA determines its target binding affinity and modulates its post-cleavage target residence duration and exposure of Cas9-induced DSBs. This exposure, via different mechanisms, may initiate variable DNA damage responses, influencing DSB repair pathway choices and contributing to mutational heterogeneity in genome editing. However, this regulation of DSB repair pathway choices is poorly understood. RESULTS: In repair of Cas9-induced DSBs, repair pathway choices vary widely at different target sites and classical nonhomologous end joining (c-NHEJ) is not even engaged at some sites. In mouse embryonic stem cells, weakening the target interaction of Cas9-sgRNA promotes bias towards c-NHEJ and increases target dissociation and reduces target residence of Cas9-sgRNAs in vitro. As an important strategy for enhancing homology-directed repair, inactivation of c-NHEJ aggravates off-target activities of Cas9-sgRNA due to its weak interaction with off-target sites. By dislodging Cas9-sgRNA from its cleaved targets, DNA replication alters DSB end configurations and suppresses c-NHEJ in favor of other repair pathways, whereas transcription has little effect on c-NHEJ engagement. Dissociation of Cas9-sgRNA from its cleaved target by DNA replication may generate three-ended DSBs, resulting in palindromic fusion of sister chromatids, a potential source for CRISPR/Cas9-induced on-target chromosomal rearrangements. CONCLUSIONS: Target residence of Cas9-sgRNA modulates DSB repair pathway choices likely through varying dissociation of Cas9-sgRNA from cleaved DNA, thus widening on-target and off-target mutational spectra in CRISPR/Cas9 genome editing.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Animales , Sistemas CRISPR-Cas , ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Edición Génica/métodos , Ratones
15.
J Zhejiang Univ Sci B ; 22(1): 73-86, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448189

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is widely used for targeted genomic and epigenomic modifications and imaging in cells and organisms, and holds tremendous promise in clinical applications. The efficiency and accuracy of the technology are partly determined by the target binding affinity and residence time of Cas9-single-guide RNA (sgRNA) at a given site. However, little attention has been paid to the effect of target binding affinity and residence duration on the repair of Cas9-induced DNA double-strand breaks (DSBs). We propose that the choice of DSB repair pathway may be altered by variation in the binding affinity and residence duration of Cas9-sgRNA at the cleaved target, contributing to significantly heterogeneous mutations in CRISPR/Cas9 genome editing. Here, we discuss the effect of Cas9-sgRNA target binding and residence on the choice of DSB repair pathway in CRISPR/Cas9 genome editing, and the opportunity this presents to optimize Cas9-based technology.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Edición Génica/métodos , Emparejamiento Base , Sitios de Unión/genética , Proteína 9 Asociada a CRISPR/metabolismo , Reparación del ADN/genética , Humanos , Modelos Biológicos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
16.
Oxid Med Cell Longev ; 2021: 2231680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34873428

RESUMEN

Radiation-induced oral mucositis is a major adverse event of radiotherapy. Severe oral mucositis may cause unwanted interruption in radiotherapy and reduce long-term survival in cancer patients receiving radiotherapy, but until now, there have been no effective options for preventing radiation-induced oral mucositis. Quercetin is a flavonoid that is widely found in food species and has anti-inflammatory, antioxidant, and anticancer activities. In this study, we investigated a new role of quercetin in preventing radiation-induced oral mucositis. Quercetin exerted preventive effects against radiation-induced oral mucositis induced by single-dose (25 Gy) ionizing radiation or fractionated ionizing radiation (8 Gy × 3) in C57BL/6 mice and maintained the proliferation ability of basal epithelial cells. Quercetin pretreatment alleviated reactive oxygen species generation, NF-κB pathway activation, and downstream proinflammatory cytokine production and reduced DNA double-strand breaks and cellular senescence induced by ionizing radiation. Quercetin also upregulated BMI-1 expression in oral epithelial cells and promoted ulcer repair. In addition, quercetin exerted similar radioprotective effects in irradiated primary cultured normal human keratinocytes, reduced reactive oxygen species generation and proinflammatory cytokine release, and promoted DNA double-strand break repair and wound healing by upregulating the expression of BMI-1, which is a polycomb group protein. Thus, quercetin can block multiple pathological processes of radiation-induced oral mucositis by targeting BMI-1 and may be a potential treatment option for preventing radiation-induced oral mucositis.


Asunto(s)
Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quercetina/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Estomatitis/prevención & control , Animales , Antioxidantes/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/metabolismo , Distribución Aleatoria , Estomatitis/etiología , Estomatitis/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Cell Rep ; 32(4): 107974, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726637

RESUMEN

Attenuated DNA repair leads to genomic instability and tumorigenesis. BRCA1/BARD1 are the best-known tumor suppressors that promote homology recombination (HR) and arrest cell cycle. However, it remains ambiguous whether and how their E3 ligase activity regulates HR. Here, we demonstrate that upon genotoxic stress, BRCA1 together with BARD1 catalyzes the K48 polyubiquitination on LARP7, a 7SK RNA binding protein known to control RNAPII pausing, and thereby degrades it through the 26S ubiquitin-proteasome pathway. Depleting LARP7 suppresses the expression of CDK1 complex, arrests the cell at the G2/M DNA damage checkpoint, and reduces BRCA2 phosphorylation, which thereby facilitates RAD51 recruitment to damaged DNA to enhance HR. Importantly, LARP7 depletion observed in breast cancer patients leads to chemoradiotherapy resistance both in vitro and in vivo. Altogether, this study unveils a mechanism by which BRCA1/BARD1 control HR and cell cycle, and highlights LARP7 as a potential target for cancer prevention and therapy.


Asunto(s)
Proteína BRCA1/genética , Ribonucleoproteínas/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Proteína BRCA1/metabolismo , Proteína Quinasa CDC2/metabolismo , Carcinogénesis , Ciclo Celular , Daño del ADN , Reparación del ADN , Femenino , Inestabilidad Genómica , Células HeLa , Recombinación Homóloga/genética , Humanos , Persona de Mediana Edad , Reparación del ADN por Recombinación/genética , Ribonucleoproteínas/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Mol Cell Biol ; 26(21): 8075-86, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16954385

RESUMEN

The Rad51 paralog Rad51C has been implicated in the control of homologous recombination. To study the role of Rad51C in vivo in mammalian cells, we analyzed short-tract and long-tract gene conversion between sister chromatids in hamster Rad51C(-/-) CL-V4B cells in response to a site-specific chromosomal double-strand break. Gene conversion was inefficient in these cells and was specifically restored by expression of wild-type Rad51C. Surprisingly, gene conversions in CL-V4B cells were biased in favor of long-tract gene conversion, in comparison to controls expressing wild-type Rad51C. These long-tract events were not associated with crossing over between sister chromatids. Analysis of gene conversion tract lengths in CL-V4B cells lacking Rad51C revealed a bimodal frequency distribution, with almost all gene conversions being either less than 1 kb or greater than 3.2 kb in length. These results indicate that Rad51C plays a pivotal role in determining the "choice" between short- and long-tract gene conversion and in suppressing gene amplifications associated with sister chromatid recombination.


Asunto(s)
Cromátides/metabolismo , Conversión Génica , Recombinasa Rad51/metabolismo , Intercambio de Cromátides Hermanas , Animales , Línea Celular , Cromátides/genética , Cricetinae , Intercambio Genético , Daño del ADN , Reparación del ADN , Genes Reporteros , Isoenzimas/genética , Isoenzimas/metabolismo , Recombinasa Rad51/genética
19.
Genome Biol ; 19(1): 170, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340517

RESUMEN

BACKGROUND: Many applications of CRISPR/Cas9-mediated genome editing require Cas9-induced non-homologous end joining (NHEJ), which was thought to be error prone. However, with directly ligatable ends, Cas9-induced DNA double strand breaks may be repaired preferentially by accurate NHEJ. RESULTS: In the repair of two adjacent double strand breaks induced by paired Cas9-gRNAs at 71 genome sites, accurate NHEJ accounts for about 50% of NHEJ events. This paired Cas9-gRNA approach underestimates the level of accurate NHEJ due to frequent + 1 templated insertions, which can be avoided by the predefined Watson/Crick orientation of protospacer adjacent motifs (PAMs). The paired Cas9-gRNA strategy also provides a flexible, reporter-less approach for analyzing both accurate and mutagenic NHEJ in cells and in vivo, and it has been validated in cells deficient for XRCC4 and in mouse liver. Due to high frequencies of precise deletions of defined "3n"-, "3n + 1"-, or "3n + 2"-bp length, accurate NHEJ is used to improve the efficiency and homogeneity of gene knockouts and targeted in-frame deletions. Compared to "3n + 1"-bp, "3n + 2"-bp can overcome + 1 templated insertions to increase the frequency of out-of-frame mutations. By applying paired Cas9-gRNAs to edit MDC1 and key 53BP1 domains, we are able to generate predicted, precise deletions for functional analysis. Lastly, a Plk3 inhibitor promotes NHEJ with bias towards accurate NHEJ, providing a chemical approach to improve genome editing requiring precise deletions. CONCLUSIONS: NHEJ is inherently accurate in repair of Cas9-induced DNA double strand breaks and can be harnessed to improve CRISPR/Cas9 genome editing requiring precise deletion of a defined length.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Edición Génica , Genoma , Eliminación de Secuencia , Animales , Secuencia de Bases , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Hígado/metabolismo , Ratones , Mutagénesis Insercional/genética , Reproducibilidad de los Resultados
20.
Nat Cell Biol ; 20(3): 320-331, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403037

RESUMEN

Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (LKB1; also known as STK11) hyperactivates mTOR complex 1 (mTORC1)-S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1-S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.


Asunto(s)
Proliferación Celular , Reparación del ADN , Neoplasias/enzimología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Roturas del ADN de Doble Cadena , Femenino , Células HCT116 , Células HEK293 , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Neoplasias/genética , Neoplasias/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Carga Tumoral , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA