Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Vet Res Commun ; 48(1): 391-401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37733150

RESUMEN

Bovine reproduction, including male fertility traits like semen quality, are influenced by a variety of different factors like breed, nutrition, environment, and feeding management. Diet in a crucial determinant, and in this regard although corn silage is generally considered to be a favorable roughage for fattening meat type breeds, it tends to have a negative impact on semen quality. In the current study, alfalfa hay was substituted by corn silage as a roughage source in the diet of bulls to investigate its effects on the fertility of breeding bulls. A feeding trail spanning 140 days was conducted, with semen collection occurring twice a week commencing 60 days after the start of trial. Semen quality parameters, serum antioxidant indexes, sex hormone content in semen, rumen microflora, and sperm transcriptome were characterized. Feeding corn silage enhanced host antioxidant capacity, significantly decreased spermatozoal motility and increased sperm deformity rate in bulls. Furthermore, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) content in semen were significantly decreased (P < 0.05), and the inhibin B (INHB) content was significantly increased (P < 0.01). Feeding corn silage led to significant changes in the diversity of rumen microbiota of cattle at the phylum and genus levels, some of which were significantly correlated with semen quality. Subsequent RNA sequencing indicated that DHH and PITHD1, two genes related to sperm and reproductive development, were differentially expressed, and enrichment analysis also identified several pathways and biological functions relevant to sperm development and reproduction. These results indicate that feeding corn silage modulates semen quality via different pathways. Firstly, corn silage metabolites likely affect the secretion of INHB through the testicular capillaries, which affects semen quality by regulating genes involved in spermatogenesis. Secondly, low lignin content in silage corn appears to reduce abundance of rumen flora that are positively correlated with semen quality. Overall, results indicate that feeding bulls corn silage as the primary source of forage could negatively impact semen quality and may not be appropriate as the primary roughage of forage for breeding bulls.


Asunto(s)
Análisis de Semen , Ensilaje , Animales , Masculino , Bovinos , Análisis de Semen/veterinaria , Zea mays , Antioxidantes , Fitomejoramiento , Semillas , Dieta/veterinaria , Espermatogénesis/fisiología , Rumen , Fibras de la Dieta/metabolismo
2.
J Anim Sci Biotechnol ; 14(1): 21, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732836

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) regulate numerous biological processes, including adipogenesis. Research on adipogenesis will assist in the treatment of human metabolic diseases and improve meat quality in livestock, such as the content of intramuscular fat (IMF). However, the significance of lncRNAs in intramuscular adipogenesis remains unclear. This research aimed to reveal the lncRNAs transcriptomic profiles in the process of bovine intramuscular adipogenesis and to identify the lncRNAs involved in the adipogenesis of bovine intramuscular adipocytes. RESULTS: In this research, a landscape of lncRNAs was identified with RNA-seq in bovine intramuscular adipocytes at four adipogenesis stages (0 d, 3 d, 6 d, and 9 d after differentiation). A total of 7035 lncRNAs were detected, including 3396 novel lncRNAs. Based on the results of differential analysis, co-expression analysis, and functional prediction, we focused on the bovine intramuscular adipogenesis-associated long non-coding RNA (BIANCR), a novel lncRNA that may have an important regulatory function. The knockdown of BIANCR inhibited proliferation and promoted apoptosis of intramuscular preadipocytes. Moreover, BIANCR knockdown inhibited intramuscular adipogenesis by regulating the ERK1/2 signaling pathway. CONCLUSION: This study obtained the landscape of lncRNAs during adipogenesis in bovine intramuscular adipocytes. BIANCR plays a crucial role in adipogenesis through the ERK1/2 signaling pathway. The results are noteworthy for improving beef meat quality, molecular breeding, and metabolic disease research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA