Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441470

RESUMEN

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Lactococcus lactis , Animales , Humanos , Pez Cebra , Aeromonas hydrophila/genética , Lactococcus lactis/genética , Bazo , Antibacterianos , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedades de los Peces/microbiología
2.
Int J Biol Macromol ; 272(Pt 2): 132876, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838887

RESUMEN

The objective of this study is to evaluate the in vitro and in vivo degradation profile and biocompatibility of poly-L-lactic acid (PLLA) porous microspheres (PMs) for their potential application as injectable microcarrier or micro-scaffolds materials in the research and clinical use of craniofacial cartilage repair. In this study, PLLA PMs prepared exhibited spherical shape and uniform surface pores followed by 24-week evaluations for degradation behavior and biocompatibility. In vitro degradation analysis encompassed morphological examination, pH monitoring, molecular weight analysis, thermodynamic assessment, and chemical structure analysis. After 12 weeks of in vitro degradation, PMs maintained a regular porous spherical structure. Molecular weight and glass transition temperature of PLLA PMs decreased over time, accompanying with an initial increase and subsequent decrease in crystallinity. Enzymatic degradation caused morphological changes and accelerated degradation in the in vitro studies. Finally, in vivo evaluations involved subcutaneous implantation of PLLA PMs in rats, demonstrating biocompatibility by enhancing type I and type III collagen regeneration as observed in histological analysis. The results demonstrated that PLLA PMs were able to maintain their spherical structure for 12 weeks, promoting the generation of collagen at the implantation site, meeting the time requirements for craniofacial cartilage repair.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Microesferas , Poliésteres , Poliésteres/química , Animales , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Peso Molecular , Andamios del Tejido/química , Masculino , Concentración de Iones de Hidrógeno , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA