Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Inorg Chem ; 63(16): 7412-7421, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38600810

RESUMEN

Nonplanar porphyrins play crucial roles in many biological processes and chemical reactions as catalysts. However, the preparation of artificial nonplanar porphyrins suffers from complicated organic syntheses. Herein, we present a new rare-earth porphyrinic metal-organic framework (RE-PMOF), BUT-233, which is a three-dimensional (3D) framework structure with the flu topology consisting of 4-connected BBCPPP-Ph ligands H4BBCPPP-Ph = 5',5⁗-(10,20-diphenylporphyrin-5,15-diyl)bis([1,1':3',1″-terphenyl]-4,4'' dicarboxylic acid) and 8-connected Eu6 clusters. Noteworthily, the porphyrin cores of the BBCPPP-Ph ligands in BUT-233 are nonplanar with a ruffle-like conformation. In contrast, the porphyrin core in the free ligand H4BBCPPP-Ph is in a nearly ideally planar conformation, as confirmed by its single-crystal structure. BUT-233 is microporous with 6-8 Špores and a Brunauer-Emmett-Teller (BET) surface area of 649 m2/g, as well as high stability in common solvents. The MOF was used as a photocatalyst for the oxidation degradation of a chemical warfare agent model molecule CEES (CEES = 2-chloroethyl ethyl sulfide) under the light-emitting diode (LED) irradiation and an O2 atmosphere at room temperature. CEES was almost completely converted into its nontoxic light-oxidized product CEESO (CEESO = 2-chloroethyl ethyl sulfoxide) in only 5 min with t1/2 = 2 min (t1/2: half-life). Moreover, the toxic deep-oxidized product 2-chloroethyl ethyl sulfone (CEESO2) was not detected. The catalytic activity of BUT-233 was high in comparison with those of some previously reported MOF catalysts. The results of photo/electrochemical property studies suggested that the high catalytic activity of BUT-233 was benefited from the presence of nonplanar porphyrin rings on its pore surface.

2.
Inorg Chem ; 63(9): 4249-4259, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364203

RESUMEN

The emission of volatile organic compounds (VOCs) significantly contributes to air pollution and poses a serious threat to human health. Benzene, one of the most toxic VOCs, is difficult for the human body to metabolize and is classified as a Group 1 carcinogen. The development of efficient adsorbents for removing trace amounts of benzene from ambient air is thus of great importance. In this work, we studied the benzene adsorption properties of four Zr-based metal-organic frameworks (Zr-MOFs) through static volumetric and dynamic breakthrough experiments. Two previously reported Zr-MOFs, BUT-12 and STA-26, were prepared with a tritopic carboxylic acid ligand (H3L1) functionalized with three methyl groups, and STA-26 is a 2-fold interpenetrated network of BUT-12. Two new isoreticular Zr-MOFs, BUT-12-Et and STA-26-Et, were synthesized using a similar ligand, H3L2, where the methyl groups are replaced with ethyl groups. There are mesopores in BUT-12 and BUT-12-Et and micropores in STA-26 and STA-26-Et. The four Zr-MOFs all showed high stability in liquid water and acidic aqueous solutions. The microporous STA-26 and STA-26-Et showed much higher benzene uptakes than mesoporous BUT-12 and BUT-12-Et at room temperature under low pressures. Particularly, the benzene adsorption capacity of STA-26-Et was high up to 2.21 mmol/g at P/P0 = 0.001 (P0 = 12.78 kPa), higher than those of the other three Zr-MOFs and most reported solid adsorbents. Breakthrough experiments confirmed that STA-26-Et could effectively capture trace benzene (10 ppm) from dry air; however, its benzene capture capacity was reduced by 90% under humid conditions (RH = 50%). Coating of the crystals of STA-26-Et with polydimethylsiloxane (PDMS) increased the hydrophobicity of the exterior MOF surfaces, leading to a more than 2-fold improvement in its benzene capture capacity in the breakthrough experiment under humid condition. PDMS coating of STA-26-Et likely slowed down the water adsorption process, and thus, the adsorbent afforded more efficient capture of benzene. This work demonstrates that modifying both the interior and exterior surfaces of MOFs can effectively enhance their performance in capturing trace benzene from ambient air, even under humid conditions. This finding is meaningful for the development of new adsorbents for effective air purification applications.

3.
Nat Mater ; 21(6): 689-695, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484330

RESUMEN

In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.


Asunto(s)
Estructuras Metalorgánicas , Compuestos Orgánicos Volátiles , Adsorción , Benceno/química , Gases
4.
Inorg Chem ; 62(31): 12329-12336, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478416

RESUMEN

Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.

5.
Chem Soc Rev ; 51(15): 6417-6441, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35702993

RESUMEN

Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.

6.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764484

RESUMEN

Developing robust and cost-effective electrocatalysts to boost hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is crucially important to electrocatalytic water splitting. Herein, bifunctional electrocatalysts, by coupling Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets (Co@NCNTs/NG), were successfully synthesized via facile high-temperature pyrolysis and evaluated for water splitting. The morphology and particle size of products were influenced by the precursor type of the cobalt source (cobalt oxide or cobalt nitrate). The pyrolysis product prepared using cobalt oxide as a cobalt source (Co@NCNTs/NG-1) exhibited the smaller particle size and higher specific surface area than that of the pyrolysis products prepared using cobalt nitrate as a cobalt source (Co@NCNTs/NG-2). Notably, Co@NCNTs/NG-1 displayed much lower potential -0.222 V vs. RHE for HER and 1.547 V vs. RHE for OER at the benchmark current density of 10 mA cm-2 than that of Co@NCNTs/NG-2, which indicates the higher bifunctional catalytic activities of Co@NCNTs/NG-1. The water-splitting device using Co@NCNTs/NG-1 as both an anode and cathode demonstrated a potential of 1.92 V to attain 10 mA cm-2 with outstanding stability for 100 h. This work provides a facile pyrolysis strategy to explore highly efficient and stable bifunctional electrocatalysts for water splitting.

7.
J Am Chem Soc ; 143(7): 2784-2791, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33492147

RESUMEN

The exploration of metal-organic frameworks (MOFs) through the rational design of building units with specific sizes, geometries, and symmetries is essential for enriching the structural diversity of porous solids for applications including storage, separation, and conversion. However, it is still a challenge to directly synthesize rare-earth (RE) MOFs with less connected clusters as a thermodynamically favored product. Herein, we report a systematic investigation on the influence of size, rigidity, and symmetry of linkers over the formation of RE-tetracarboxylate MOFs and uncover the critical role of linker desymmetrization in constructing RE-MOFs with eight-connected hexanuclear clusters. Our results on nine new RE-MOFs, PCN-50X (X = 1-9), indicate that utilization of trapezoidal or tetrahedral linkers provides accesses to traditionally unattainable RE-tetracarboxylate MOFs with 8-c hexanuclear nodes, while the introduction of square or rectangular linkers during the assembly of RE-MOFs based on polynuclear clusters typically leads to the MOFs constructed from 12-c nodes with underlying shp topology. By rational linker design, MOFs with two unprecedented (4, 8)-c nets, lxl and jun, can also be obtained. This work highlights linker desymmetrization as a powerful strategy to enhance MOFs' structural complexity and access MOF materials with nondefault topologies that can be potentially used for separation and catalysis.

8.
Chem Rev ; 119(18): 10638-10690, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31361477

RESUMEN

Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.


Asunto(s)
Inocuidad de los Alimentos/métodos , Abastecimiento de Alimentos/normas , Estructuras Metalorgánicas/química , Contaminación de Alimentos/prevención & control , Embalaje de Alimentos , Humanos , Estructuras Metalorgánicas/análisis
9.
Angew Chem Int Ed Engl ; 60(4): 2053-2057, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33038039

RESUMEN

Further development of metal-organic frameworks (MOFs) requires an establishment of hierarchical interaction within the framework. Herein, we report a series of mesoporous rare-earth (RE) MOFs that are constructed from an unusual 12-connected π-stacked pyrene secondary building unit (SBU) and a typical 12-connected RE6 cluster (RE=Eu, Y, Yb, Tb, Ce). The judicious design of a butterfly-shape pyrene ligand with a tert-butyl substituent enables the formation of the disordered 12-connected organic SBUs on its strong intermolecular π-π interactions. The assembly of 12-connected inorganic cuboctahedron SBUs and 12-connected organic distorted hexagonal prism SBUs generates an unprecedented network that can be further simplified into a 4,4-connected pts net linked from planar square and tetrahedra. This work provides fresh insights into the design and synthesis of frameworks constructed from coordinatively, covalently, and noncovalently linked building units.

10.
J Am Chem Soc ; 142(28): 12478-12485, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551570

RESUMEN

A microporous three-dimensional (3D) hydrogen-bonded organic framework (HOF-20) has been constructed from an aromatic-rich tetratopic carboxylic acid, 5-(2,6-bis(4-carboxyphenyl)pyridin-4-yl)isophthalic acid (H4BCPIA). The activated HOF-20a has a moderately high Brunauer-Emmett-Teller (BET) surface area of 1323 m2 g-1 and excellent stability in water and HCl aqueous solution. HOF-20 exhibits highly efficient turn-up fluorescent sensing of aniline in water with a detection limit of 2.24 µM and is selective toward aniline in the presence of aromatic interferents, owing to the hydrogen bonding and edge-to-face π-π stacking interactions between the HOF-20 host and the guest aniline molecules, as demonstrated in the single-crystal X-ray structure of HOF-20⊃aniline. Density functional theory (DFT) calculations further demonstrate that the recognition of aniline molecules by HOF-20 could restrict the rotation of the aromatic rings in H4BCPIA linkers, reducing the nonradiative decay pathways upon photoexcitation and subsequently enhancing the fluorescence intensity.


Asunto(s)
Compuestos de Anilina/análisis , Ácidos Carboxílicos/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos/síntesis química , Teoría Funcional de la Densidad , Colorantes Fluorescentes/síntesis química , Enlace de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
11.
J Am Chem Soc ; 141(26): 10283-10293, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31180667

RESUMEN

Metal-organic frameworks (MOFs) have been developing at an unexpected rate over the last two decades. However, the unsatisfactory chemical stability of most MOFs hinders some of the fundamental studies in this field and the implementation of these materials for practical applications. The stability in a MOF framework is mostly believed to rely upon the robustness of the M-L (M = metal ion, L = ligand) coordination bonds. However, the role of organic linkers as agents of stability to the framework, particularly the linker rigidity/flexibility, has been mostly overlooked. In this work, we demonstrate that a ligand-rigidification strategy can enhance the stability of MOFs. Three series of ligand rotamers with the same connectivity but different flexibility were prepared. Thirteen Zr-based MOFs were constructed with the Zr6O4(OH4)(-CO2) n units ( n = 8 or 12) and corresponding ligands. These MOFs allow us to evaluate the influence of ligand rigidity, connectivities, and structure on the stability of the resulting materials. It was found that the rigidity of the ligands in the framework strongly contributes to the stability of corresponding MOFs. Furthermore, water adsorption was performed on some chemically stable MOFs, showing excellent performance. It is expected that more MOFs with excellent stability could be designed and constructed by utilizing this strategy, ultimately promoting the development of MOFs with higher stability for synthetic chemistry and practical applications.

12.
Chem Rev ; 117(14): 9674-9754, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28394578

RESUMEN

This Review focuses on research oriented toward elucidation of the various aspects that determine adsorption of CO2 in metal-organic frameworks and its separation from gas mixtures found in industrial processes. It includes theoretical, experimental, and combined approaches able to characterize the materials, investigate the adsorption/desorption/reaction properties of the adsorbates inside such environments, screen and design new materials, and analyze additional factors such as material regenerability, stability, effects of impurities, and cost among several factors that influence the effectiveness of the separations. CO2 adsorption, separations, and membranes are reviewed followed by an analysis of the effects of stability, impurities, and process operation conditions on practical applications.

13.
Inorg Chem ; 57(22): 14260-14268, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30403482

RESUMEN

As the Cr2O72- anion is highly toxic, new sensors have been developing for its effective detection from water, among which metal-organic frameworks (MOFs) show distinct superiority over many other materials. Herein, a new fluorescent Zr(IV)-based MOF, [Zr6O4(OH)8(H2O)4(sbtc)2] (referred to as BUT-28), based on the di-isophthalate ligand with a central CH═CH moiety, trans-stilbene-3,3',5,5'-tetracarboxylate (sbtc4-), has been prepared and structurally determined. The MOF shows excellent stability in neutral, highly acidic, and weakly basic aqueous solutions. Moreover, no essential uptake loss in three cycles of water vapor adsorption-desorption measurements was observed for BUT-28, suggesting the robustness of the porous framework and its great potential for long-term use. Fluorescent measurements were carried out for BUT-28 and an isostructural MOF, Zr-abtc, which is constructed from the di-isophthalate ligand with a central N═N moiety, azobenzene-3,3',5,5'-tetracarboxylate (abtc4-). Interestingly, Zr-abtc shows very weak fluorescent emission. In contrast, BUT-28 exhibits relatively strong fluorescence and serves as a promising sensory material for the detection of trace Cr2O72- (limit of detection: 36 ppb) in aqueous solutions by selective and sensitive fluorescence quenching effect.

14.
J Am Chem Soc ; 139(36): 12346-12349, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28837326

RESUMEN

Determining the total structure of metal nanoparticles is vital to understand their properties. In this work, the first all-alkynyl-protected Ag nanocluster, Ag74(C≡CPh)44, was synthesized and structurally characterized by single crystal diffraction. Ag atoms are arranged in a Ag4@Ag22@Ag48 three shell structure and all 44 phenylethynyl ligands coordinated with Ag in a µ3 mode. In spite of being absent in nanocluster, 31P NMR study reveals that bidentate phosphine first reacts with Ag(I) to form a dinuclear complex, from which Ag atoms are then released to phenylethynyl ligands. This phosphine mediated strategy may find general application in synthesis of alkynyl-protected Ag nanoclusters.

15.
Chemphyschem ; 18(22): 3245-3252, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28782155

RESUMEN

Metal-organic frameworks (MOFs) have shown great potential for application in various fields, including CO2 capture and proton conduction. For promoting their practical applications, both optimization of a given property and enhancement of chemical stability are crucial. In this work, three base-stable isostructural MOFs, [Ni8 (OH)4 (H2 O)2 (BDP-X)6 ] (Ni-BDP-X; H2 BDP=1,4-bis(4-pyrazolyl)benzene, X=CHO, CN, COOH) with different functional groups, are designed, synthesized, and used in CO2 capture and proton conduction experiments. They possess face-centered cubic topological structures with functional nanoscale cavities. Importantly, these MOFs are fairly stable to maintain their structures in boiling water and 4 M sodium hydroxide solution at room temperature. Functionalization endows them with tunable properties. In gas adsorption studies, these MOFs exhibit selective adsorption of CO2 over CH4 and N2 , and in particular the introduction of COOH groups provides the highest selectivity. In addition, the COOH-functionalized Ni-BDP exhibits a high proton conductivity of 2.22×10-3  S cm-1 at 80 °C and approximately 97 % relative humidity.

16.
Inorg Chem ; 56(4): 2188-2197, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28165753

RESUMEN

Three new water-stable In(III)-based metal-organic frameworks, namely, [In3(TTTA)2(OH)3(H2O)]·(DMA)3 (BUT-70, DMA = N,N-dimethylacetamide), [In3(TTTA)2(CH3O)3] (BUT-70A), and [In3(TTTA)2(OH)3] (BUT-70B), with rod-shaped secondary building units (SBUs) and an new acrylate-based ligand, (2E,2'E,2″E)-3,3',3″-(2,4,6-trimethylbenzene-1,3,5-triyl)-triacrylate (TTTA3-) were obtained and structurally characterized. BUT-70A and -70B were generated in a single-crystal to single-crystal transformation fashion from BUT-70 through guest exchange followed by their removal. The solvents used for guest exchange were methanol and dichloromethane, respectively. Single-crystal structure analyses show that the guest exchange and removal process is accompanied by the substitution of coordinated water molecules of In(III) centers with uncoordinated carboxylate O atoms of TTTA3- ligands. Moreover, hydroxyl groups bridging two In(III) centers are also replaced by methoxyl groups in the transformation from BUT-70 to -70A. Overall, three metal-organic frameworks (MOFs) are constructed by infinite chains consisting of corner-sharing InO4(OR)2 (R = H or Me) octahedral entities, which are interconnected by TTTA3- ligands to form three-dimensional frameworks. Unlike most reported MOFs with infinite chains as SBUs, such as well-known MIL-53 and M-MOF-74, which have one-dimensional channels along the chain direction, the BUT-70 series contain two-dimensional intersecting channels. The Brunauer-Emmett-Teller surface area and pore volume of BUT-70A were estimated to be 460 m2 g-1 and 0.18 cm3 g-1, respectively, which are obviously lower than those of BUT-70B (695 m2 g-1 and 0.29 cm3 g-1). Gas adsorption experiments demonstrated that BUT-70A and -70B are able to selectively adsorb C2H2 over CO2 and CH4. At 1 atm and 298 K, BUT-70A uptakes 3.1 mmol g-1 C2H2, which is 3.6 times that of the CO2 uptake and 7.2 times that of the CH4 uptake. Compared with BUT-70A, BUT-70B presents an even higher C2H2 uptake of 3.9 mmol g-1 at the same conditions, but slightly lower Ideal Adsorbed Solution Theory C2H2/CO2 and C2H2/CH4 selectivities.

17.
Chem Soc Rev ; 45(8): 2327-67, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26886869

RESUMEN

Among the large family of metal-organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.

18.
J Am Chem Soc ; 138(19): 6204-16, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27090616

RESUMEN

Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal-organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5'-(4-carboxyphenyl)-2',4',6'-trimethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6',6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer-Emmett-Teller surface area of 3387 and 3948 m(2) g(-1), respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs represent excellent fluorescent properties, which can be efficiently quenched by trace amounts of nitrofurazone (NZF) and nitrofurantoin (NFT) antibiotics as well as 2,4,6-trinitrophenol (TNP) and 4-nitrophenol (4-NP) organic explosives in water solution. They are responsive to NZF and TNP at parts per billion (ppb) levels, which are among the best performing luminescent MOF-based sensing materials. Simultaneously, both MOFs also display high adsorption abilities toward these organic molecules. It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency. These results indicate that BUT-12 and -13 are favorable materials for the simultaneous selective detection and removal of specific antibiotics and organic explosives from water, being potentially useful in monitoring water quality and treating wastewater.

19.
Chemistry ; 19(35): 11590-7, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23881821

RESUMEN

A new porous organic polymer, SNU-C1, incorporating two different CO2 -attracting groups, namely, carboxy and triazole groups, has been synthesized. By activating SNU-C1 with two different methods, vacuum drying and supercritical-CO2 treatment, the guest-free phases, SNU-C1-va and SNU-C1-sca, respectively, were obtained. Brunauer-Emmett-Teller (BET) surface areas of SNU-C1-va and SNU-C1-sca are 595 and 830 m(2) g(-1), respectively, as estimated by the N2-adsorption isotherms at 77 K. At 298 K and 1 atm, SNU-C1-va and SNU-C1-sca show high CO2 uptakes, 2.31 mmol g(-1) and 3.14 mmol g(-1), respectively, the high level being due to the presence of abundant polar groups (carboxy and triazole) exposed on the pore surfaces. Five separation parameters for flue gas and landfill gas in vacuum-swing adsorption were calculated from single-component gas-sorption isotherms by using the ideal adsorbed solution theory (IAST). The data reveal excellent CO2-separation abilities of SNU-C1-va and SNU-C1-sca, namely high CO2-uptake capacity, high selectivity, and high regenerability. The gas-cycling experiments for the materials and the water-treated samples, experiments that involved treating the samples with a CO2-N2 gas mixture (15:85, v/v) followed by a pure N2 purge, further verified the high regenerability and water stability. The results suggest that these materials have great potential applications in CO2 separation.

20.
ACS Appl Mater Interfaces ; 15(4): 5357-5364, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689406

RESUMEN

Expanding the structural diversity of porphyrinic metal-organic frameworks (PMOFs) is essential to develop functional materials with novel properties or enhanced performance in different applications. Herein, we establish a strategy to construct rare-earth (RE) PMOFs with unprecedented topology via rational functionalization of porphyrinic ligands. By introducing phenyl/pyridyl groups to the meso-positions of the porphyrin core, the symmetries and connectivities of the ligands are tuned, and three RE-PMOFs (BUT-224/-225/-226) with new topologies are successfully obtained. In addition, BUT-225(Co), with both the Lewis basic and acidic sites, exhibits enhanced CO2 uptake and higher catalytic activity for the cycloaddition of CO2 and epoxides under mild conditions. This work reveals that the RE-PMOFs with novel topologies can be rationally designed and constructed through ligand functionalization, which provides insights into the construction of tailored PMOFs for various applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA