Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Horiz ; 11(11): 2729-2738, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511304

RESUMEN

A key challenge in designing single-atom catalysts (SACs) with multiple and synergistic functions is to optimize their structure across different scales, as each scale determines specific material properties. We advance the concept of a comprehensive optimization of SACs across different levels of scale, from atomic, microscopic to mesoscopic scales, based on interfacial kinetics control on the coupled metal-dissolution/polymer-growth process in SAC synthesis. This approach enables us to manipulate the multilevel interior morphologies of SACs, such as highly porous, hollow, and double-shelled structures, as well as the exterior morphologies inherited from the metal oxide precursors. The atomic environment around the metal centers can be flexibly adjusted during the dynamic metal-oxide consumption and metal-polymer formation. We show the versatility of this approach using mono- or bi-metallic oxides to access SACs with rich microporosity, tunable mesoscopic structures and atomic coordinating compositions of oxygen and nitrogen in the first coordination-shell. The structures at each level collectively optimize the electronic and geometric structure of the exposed single-atom sites and lower the surface *O formation barriers for efficient and selective peroxidase-type reaction. The unique spatial geometric configuration of the edge-hosted active centers further improves substrate accessibility and substrate-to-catalyst hydrogen overflow due to tunable structural heterogeneity at mesoscopic scales. This strategy opens up new possibilities for engineering more multilevel structures and offers a unique and comprehensive perspective on the design principles of SACs.

2.
Adv Sci (Weinh) ; 10(34): e2304088, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840391

RESUMEN

A zinc (Zn)-based single-atom catalyst (SAC) is recently reported as an active Fenton-like catalyst; however, the low Zn loading greatly restricts its catalytic activity. Herein, a molecule-confined pyrolysis method is demonstrated to evidently increase the Zn loading to 11.54 wt.% for a Zn SAC (ZnSA -N-C) containing a mixture of Zn-N4 and Zn-N3 coordination structures. The latter unsaturated Zn-N3 sites promote electron delocalization to lower the average valence state of Zn in the mix-coordinated Zn-Nx moiety conducive to interaction of ZnSA -N-C with peroxydisulfate (PDS). A speedy Fenton-like catalysis is thus realized by the high-loading and low-valence ZnSA -N-C for PDS activation with a specific activity up to 0.11 min L-1 m-2 , outstripping most Fenton-like SACs. Experimental results reveal that the formation of ZnSA -N-C-PDS* complex owing to the strong affinity of ZnSA -N-C to PDS empowers intense direct electron transfer from the electron-rich pollutant toward this complex, dominating the rapid bisphenol A (BPA) elimination. The electron transfer pathway benefits the desirable environmental robustness of the ZnSA -N-C/PDS system for actual water decontamination. This work represents a new class of efficient and durable Fenton-like SACs for potential practical environmental applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA