Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 310(11): F1377-84, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27029424

RESUMEN

Autonomic and somatic motor neurons that innervate the urinary bladder and urethra control the highly coordinated functions of the lower urinary tract, the storage, and the emptying of urine. ACh is the primary excitatory neurotransmitter in the bladder. Here, we aimed to determine whether PKA regulates neuronal ACh release and related nerve-evoked detrusor smooth muscle (DSM) contractions in the guinea pig urinary bladder. Isometric DSM tension recordings were used to measure spontaneous phasic and electrical field stimulation (EFS)- and carbachol-induced DSM contractions with a combination of pharmacological tools. The colorimetric method was used to measure ACh released by the parasympathetic nerves in DSM isolated strips. The pharmacological inhibition of PKA with H-89 (10 µM) increased the spontaneous phasic contractions, whereas it attenuated the EFS-induced DSM contractions. Intriguingly, H-89 (10 µM) attenuated the (primary) cholinergic component, whereas it simultaneously increased the (secondary) purinergic component of the nerve-evoked contractions in DSM isolated strips. The acetylcholinesterase inhibitor, eserine (10 µM), increased EFS-induced DSM contractions, and the subsequent addition of H-89 attenuated the contractions. H-89 (10 µM) significantly increased DSM phasic contractions induced by the cholinergic agonist carbachol. The inhibition of PKA decreased the neuronal release of ACh in DSM tissues. This study revealed that PKA-mediated signaling pathways differentially regulate nerve-evoked and spontaneous phasic contractions of guinea pig DSM. Constitutively active PKA in the bladder nerves controls synaptic ACh release, thus regulating the nerve-evoked DSM contractions, whereas PKA in DSM cells controls the spontaneous phasic contractility.


Asunto(s)
Acetilcolina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Neuronas/metabolismo , Vejiga Urinaria/metabolismo , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Estimulación Eléctrica , Cobayas , Isoquinolinas/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Neuronas/efectos de los fármacos , Fisostigmina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Vejiga Urinaria/efectos de los fármacos
2.
Am J Physiol Renal Physiol ; 310(10): F994-9, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26911851

RESUMEN

Large-conductance Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) function. We aimed to investigate phosphodiesterase type 1 (PDE1) interactions with BK channels in human DSM to determine the mechanism by which PDE1 regulates human urinary bladder physiology. A combined electrophysiological, functional, and pharmacological approach was applied using human DSM specimens obtained from open bladder surgeries. The perforated whole cell patch-clamp technique was used to record transient BK currents (TBKCs) and the cell membrane potential in freshly isolated human DSM cells in combination with the selective PDE1 inhibitor, 8-methoxymethyl-3-isobutyl-1-methylxanthine (8MM-IBMX). Isometric DSM tension recordings were used to measure spontaneous phasic and electrical field stimulation-induced contractions in human DSM isolated strips. Selective pharmacological inhibition of PDE1 with 8MM-IBMX (10 µM) increased TBKC activity in human DSM cells, which was abolished by subsequent inhibition of protein kinase A (PKA) with H-89 (10 µM). The stimulatory effect of 8MM-IBMX on TBKCs was reversed upon activation of muscarinic acetylcholine receptors with carbachol (1 µM). 8MM-IBMX (10 µM) hyperpolarized the DSM cell membrane potential, an effect blocked by PKA inhibition. 8MM-IBMX significantly decreased spontaneous phasic and nerve-evoked contractions of human DSM isolated strips. The results reveal a novel mechanism that pharmacological inhibition of PDE1 attenuates human DSM excitability and contractility by activating BK channels via a PKA-dependent mechanism. The data also suggest interactions between PDE1 and muscarinic signaling pathways in human DSM. Inhibition of PDE1 can be a novel therapeutic approach for the treatment of overactive bladder associated with detrusor overactivity.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Fosfodiesterasa I/metabolismo , Vejiga Urinaria Hiperactiva/metabolismo , Xantinas/farmacología , Anciano , Carbacol , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Técnicas In Vitro , Isoquinolinas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Persona de Mediana Edad , Técnicas de Placa-Clamp , Fosfodiesterasa I/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonamidas , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Xantinas/uso terapéutico
3.
Am J Physiol Cell Physiol ; 309(2): C107-16, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25948731

RESUMEN

Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca(2+) imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na(+) channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca(2+) channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca(2+) transients and basal Ca(2+) levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels.


Asunto(s)
Acetilcolina/metabolismo , Fibras Colinérgicas/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Contracción Isométrica/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Morfolinas/farmacología , Músculo Liso/efectos de los fármacos , Compuestos Organotiofosforados/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Potasio/metabolismo , Vejiga Urinaria/efectos de los fármacos , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Fibras Colinérgicas/metabolismo , Relación Dosis-Respuesta a Droga , Cobayas , Técnicas In Vitro , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Potenciales de la Membrana , Músculo Liso/inervación , Músculo Liso/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo , Vejiga Urinaria/inervación , Vejiga Urinaria/metabolismo
4.
Am J Physiol Cell Physiol ; 309(6): C415-24, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26201952

RESUMEN

Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 µM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Células HEK293 , Humanos , Hidrólisis , Activación del Canal Iónico/fisiología , Rolipram/farmacología , Xantinas/farmacología
5.
Am J Physiol Cell Physiol ; 307(12): C1142-50, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25318105

RESUMEN

The elevation of protein kinase A (PKA) activity activates the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in urinary bladder smooth muscle (UBSM) cells and consequently attenuates spontaneous phasic contractions of UBSM. However, the role of constitutive PKA activity in UBSM function has not been studied. Here, we tested the hypothesis that constitutive PKA activity is essential for controlling the excitability and contractility of UBSM. We used patch clamp electrophysiology, line-scanning confocal and ratiometric fluorescence microscopy on freshly isolated guinea pig UBSM cells, and isometric tension recordings on freshly isolated UBSM strips. Pharmacological inhibition of the constitutive PKA activity with H-89 or PKI 14-22 significantly reduced the frequency and amplitude of spontaneous transient BK channel currents (TBKCs) in UBSM cells. Confocal and ratiometric fluorescence microscopy studies revealed that inhibition of constitutive PKA activity with H-89 reduced the frequency and amplitude of the localized Ca(2+) sparks but increased global Ca(2+) levels and the magnitude of Ca(2+) oscillations in UBSM cells. H-89 abolished the spontaneous transient membrane hyperpolarizations and depolarized the membrane potential in UBSM cells. Inhibition of PKA with H-89 or KT-5720 also increased the amplitude and muscle force of UBSM spontaneous phasic contractions. This study reveals the novel concept that constitutive PKA activity is essential for controlling localized Ca(2+) signals generated by intracellular Ca(2+) stores and cytosolic Ca(2+) levels. Furthermore, constitutive PKA activity is critical for mediating the spontaneous TBKCs in UBSM cells, where it plays a key role in regulating spontaneous phasic contractions in UBSM.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Contracción Muscular , Músculo Liso/enzimología , Vejiga Urinaria/enzimología , Animales , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Cobayas , Masculino , Potenciales de la Membrana , Microscopía Confocal , Microscopía Fluorescente , Contracción Muscular/efectos de los fármacos , Fuerza Muscular , Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Factores de Tiempo , Vejiga Urinaria/efectos de los fármacos
6.
J Pharmacol Exp Ther ; 349(1): 56-65, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24459245

RESUMEN

Elevation of intracellular cAMP and activation of protein kinase A (PKA) lead to activation of large conductance voltage- and Ca(2+)-activated K(+) (BK) channels, thus attenuation of detrusor smooth muscle (DSM) contractility. In this study, we investigated the mechanism by which pharmacological inhibition of cAMP-specific phosphodiesterase 4 (PDE4) with rolipram or Ro-20-1724 (C(15)H(22)N(2)O(3)) suppresses guinea pig DSM excitability and contractility. We used high-speed line-scanning confocal microscopy, ratiometric fluorescence Ca(2+) imaging, and perforated whole-cell patch-clamp techniques on freshly isolated DSM cells, along with isometric tension recordings of DSM isolated strips. Rolipram caused an increase in the frequency of Ca(2+) sparks and the spontaneous transient BK currents (TBKCs), hyperpolarized the cell membrane potential (MP), and decreased the intracellular Ca(2+) levels. Blocking BK channels with paxilline reversed the hyperpolarizing effect of rolipram and depolarized the MP back to the control levels. In the presence of H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride], a PKA inhibitor, rolipram did not cause MP hyperpolarization. Rolipram or Ro-20-1724 reduced DSM spontaneous and carbachol-induced phasic contraction amplitude, muscle force, duration, and frequency, and electrical field stimulation-induced contraction amplitude, muscle force, and tone. Paxilline recovered DSM contractility, which was suppressed by pretreatment with PDE4 inhibitors. Rolipram had reduced inhibitory effects on DSM contractility in DSM strips pretreated with paxilline. This study revealed a novel cellular mechanism whereby pharmacological inhibition of PDE4 leads to suppression of guinea pig DSM contractility by increasing the frequency of Ca(2+) sparks and the functionally coupled TBKCs, consequently hyperpolarizing DSM cell MP. Collectively, this decreases the global intracellular Ca(2+) levels and DSM contractility in a BK channel-dependent manner.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Vejiga Urinaria/efectos de los fármacos , 4-(3-Butoxi-4-metoxibencil)-2-imidazolidinona/administración & dosificación , 4-(3-Butoxi-4-metoxibencil)-2-imidazolidinona/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Estimulación Eléctrica , Cobayas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Relajación Muscular/fisiología , Músculo Liso/citología , Músculo Liso/fisiología , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Rolipram/administración & dosificación , Rolipram/farmacología , Vejiga Urinaria/citología , Vejiga Urinaria/fisiología
7.
Am J Physiol Cell Physiol ; 304(5): C467-77, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23302778

RESUMEN

Members of the transient receptor potential (TRP) channel superfamily, including the Ca(2+)-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca(2+) imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca(2+) imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 µM) significantly reduced the cation current and decreased intracellular Ca(2+) levels. 9-Phenanthrol (0.1-30 µM) significantly inhibited spontaneous, 0.1 µM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1-7 µM and 70-80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5-50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling.


Asunto(s)
Músculo Liso/fisiología , Miocitos del Músculo Liso/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cobayas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp/métodos , Fenantrenos/farmacología , Canales Catiónicos TRPM/metabolismo
8.
Am J Physiol Renal Physiol ; 304(7): F918-29, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23283997

RESUMEN

The TRPM4 channel is a Ca(2+)-activated, monovalent cation-selective channel of the melastatin transient receptor potential (TRPM) family. The TRPM4 channel is implicated in the regulation of many cellular processes including the immune response, insulin secretion, and pressure-induced vasoconstriction of cerebral arteries. However, the expression and function of the TRPM4 channels in detrusor smooth muscle (DSM) have not yet been explored. Here, we provide the first molecular, electrophysiological, and functional evidence for the presence of TRPM4 channels in rat DSM. We detected the expression of TRPM4 channels at mRNA and protein levels in freshly isolated DSM single cells and DSM tissue using RT-PCR, Western blotting, immunohistochemistry, and immunocytochemistry. 9-Hydroxyphenanthrene (9-phenanthrol), a novel selective inhibitor of TRPM4 channels, was used to examine their role in DSM function. In perforated patch-clamp recordings using freshly isolated rat DSM cells, 9-phenanthrol (30 µM) decreased the spontaneous inward current activity at -70 mV. Real-time DSM live-cell Ca(2+) imaging showed that selective inhibition of TRPM4 channels with 9-phenanthrol (30 µM) significantly reduced the intracellular Ca(2+) levels. Isometric DSM tension recordings revealed that 9-phenanthrol (0.1-30 µM) significantly inhibited the amplitude, muscle force integral, and frequency of the spontaneous phasic and pharmacologically induced contractions of rat DSM isolated strips. 9-Phenanthrol also decreased the amplitude and muscle force integral of electrical field stimulation-induced contractions. In conclusion, this is the first study to examine the expression and provide evidence for TRPM4 channels as critical regulators of rat DSM excitability and contractility.


Asunto(s)
Músculo Liso/fisiología , Canales Catiónicos TRPM/fisiología , Vejiga Urinaria/fisiología , Animales , Masculino , Contracción Muscular/efectos de los fármacos , Técnicas de Placa-Clamp , Fenantrenos/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/biosíntesis , Vejiga Urinaria/efectos de los fármacos
9.
FASEB J ; 26(9): 3670-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22649031

RESUMEN

A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules that can compartmentalize cAMP signaling transduced by ß2-adrenergic receptors (ß(2)ARs); such compartmentalization ensures speed and fidelity of cAMP signaling and effects on cell function. This study aimed to assess the role of AKAPs in regulating global and compartmentalized ß(2)AR signaling in human airway smooth muscle (ASM). Transcriptome and proteomic analyses were used to characterize AKAP expression in ASM. Stable expression or injection of peptides AKAP-IS or Ht31 was used to disrupt AKAP-PKA interactions, and global and compartmentalized cAMP accumulation stimulated by ß-agonist was assessed by radioimmunoassay and membrane-delineated flow through cyclic nucleotide-gated channels, respectively. ASM expresses multiple AKAP family members, with gravin and ezrin among the most readily detected. AKAP-PKA disruption had minimal effects on whole-cell cAMP accumulation stimulated by ß-agonist (EC(50) and B(max)) concentrations, but significantly increased the duration of plasma membrane-delineated cAMP (τ=251±51 s for scrambled peptide control vs. 399±79 s for Ht31). Direct PKA inhibition eliminated decay of membrane-delineated cAMP levels. AKAPs coordinate compartmentalized cAMP signaling in ASM cells by regulating multiple elements of ß(2)AR-mediated cAMP accumulation, thereby representing a novel target for manipulating ß(2)AR signaling and function in ASM.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Compartimento Celular , AMP Cíclico/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Tráquea/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Células Cultivadas , Humanos , Músculo Liso/citología , ARN Mensajero/genética , Tráquea/citología
10.
Am J Physiol Cell Physiol ; 302(9): C1361-70, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22322973

RESUMEN

Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ∼3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ∼2-fold and hyperpolarized the DSM cell resting membrane potential by ∼6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca(2+) sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso/metabolismo , Vejiga Urinaria/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Cobayas , Masculino , Contracción Muscular/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo
11.
Am J Physiol Cell Physiol ; 303(10): C1079-89, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22992675

RESUMEN

The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) excitability and contractility. Recently, we showed that nonselective phosphodiesterase (PDE) inhibition reduces guinea pig DSM excitability and contractility by increasing BK channel activity. Here, we investigated how DSM excitability and contractility changes upon selective inhibition of PDE type 1 (PDE1) and the underlying cellular mechanism involving ryanodine receptors (RyRs) and BK channels. PDE1 inhibition with 8-methoxymethyl-3-isobutyl-1-methylxanthine (8MM-IBMX; 10 µM) increased the cAMP levels in guinea pig DSM cells. Patch-clamp experiments on freshly isolated DSM cells showed that 8MM-IBMX increased transient BK currents and the spontaneous transient hyperpolarization (STH) frequency by ∼2.5- and ∼1.8-fold, respectively. 8MM-IBMX hyperpolarized guinea pig and human DSM cell membrane potential and significantly decreased the intracellular Ca(2+) levels in guinea pig DSM cells. Blocking BK channels with 1 µM paxilline or inhibiting RyRs with 30 µM ryanodine abolished the STHs and the 8MM-IBMX inhibitory effects on the DSM cell membrane potential. Isometric DSM tension recordings showed that 8MM-IBMX significantly reduced the spontaneous phasic contraction amplitude, muscle force integral, duration, frequency, and tone of DSM isolated strips. The electrical field stimulation-induced DSM contraction amplitude, muscle force integral, and duration were also attenuated by 10 µM 8MM-IBMX. Blocking BK channels with paxilline abolished the 8MM-IBMX effects on DSM contractions. Our data provide evidence that PDE1 inhibition relaxes DSM by raising cellular cAMP levels and subsequently stimulates RyRs, which leads to BK channel activation, membrane potential hyperpolarization, and decrease in intracellular Ca(2+) levels.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Vejiga Urinaria/fisiología , 1-Metil-3-Isobutilxantina/análogos & derivados , 1-Metil-3-Isobutilxantina/farmacología , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Estimulación Eléctrica , Regulación Enzimológica de la Expresión Génica , Cobayas , Humanos , Isoenzimas , Masculino , Potenciales de la Membrana/fisiología , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Vejiga Urinaria/efectos de los fármacos , Xantinas/farmacología
12.
Am J Physiol Renal Physiol ; 303(9): F1300-6, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22896041

RESUMEN

Pharmacological blockade of cyclic nucleotide phosphodiesterase (PDE) can relax human urinary bladder smooth muscle (UBSM); however, the underlying cellular mechanism is unknown. In this study, we investigated the effects of PDE pharmacological blockade on human UBSM excitability, spontaneous and nerve-evoked contractility, and determined the underlying cellular mechanism mediating these effects. Patch-clamp electrophysiological experiments showed that 3-isobutyl-1-methylxanthine (10 µM), a nonselective PDE inhibitor, caused ∼3.6-fold increase in the transient K(Ca)1.1 channel current frequency and ∼2.5-fold increase in the spontaneous transient hyperpolarization frequency in UBSM-isolated cells. PDE blockade also caused ∼5.6-mV hyperpolarization of the UBSM cell membrane potential. Blocking the K(Ca)1.1 channels with paxilline abolished the spontaneous transient hyperpolarization and the hyperpolarization effect of PDE blockade on the UBSM cell membrane potential. Live cell Ca(2+)-imaging experiments showed that PDE blockade significantly decreased the global intracellular Ca(2+) levels. Attenuation of PDE activity significantly reduced spontaneous phasic contraction amplitude, muscle force integral, duration, frequency, and muscle tone of human UBSM isolated strips. Blockade of PDE also significantly reduced the contraction amplitude, muscle force integral, and duration of the nerve-evoked contractions induced by 20-Hz electrical field stimulation. Pharmacological inhibition of K(Ca)1.1 channels abolished the relaxation effects of PDE blockade on both spontaneous and nerve-evoked contractions in human UBSM-isolated strips. Our data provide strong evidence that in human UBSM PDE is constitutively active, thus maintaining spontaneous UBSM contractility. PDE blockade causes relaxation of human UBSM by increasing transient K(Ca)1.1 channel current activity, hyperpolarizing cell membrane potential, and decreasing the global intracellular Ca(2+).


Asunto(s)
Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Músculo Liso/fisiología , Hidrolasas Diéster Fosfóricas/fisiología , Vejiga Urinaria/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Anciano , Femenino , Humanos , Técnicas In Vitro , Indoles/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Persona de Mediana Edad , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Vejiga Urinaria/efectos de los fármacos
13.
Methods Mol Biol ; 2483: 265-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286682

RESUMEN

In the last 20 years tremendous progress has been made in the development of single cell cAMP sensors. Sensors are based upon cAMP binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here, we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells using cyclic nucleotide (CNG) channel-based probes. These probes take advantage of the ability of CNG channels to transduce small changes in cAMP concentration into ionic flux through channel pores that can be readily detected by measuring Ca2+ and/or Mn2+ influx or by measuring ionic currents.


Asunto(s)
AMP Cíclico , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Calcio/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Transducción de Señal
14.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 765-773, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32808070

RESUMEN

Bile acids are endogenous amphiphilic steroids from the metabolites of cholesterol. Studies showed that they might contribute to the pathogenesis of cardiopathy in cholestatic liver diseases. Chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) is associated with colon cancer, gallstones, and gastrointestinal disorders. However, little information is available regarding their cardiac effects. Here, we reported that CDCA (100 µM) and DCA (100 µM) significantly increased the left ventricular developed pressure of the isolated rat hearts to 122.3 ± 5.6% and 145.1 ± 13.7%, and the maximal rate of the pressure development rising and descending (± dP/dtmax) to 103.4 ± 17.6% and 124.4 ± 37.7% of the basal levels, respectively. They decreased the heart rate and prolonged the RR, QRS, and QT intervals of Langendorff-perfused hearts in a concentration-dependent manner. Moreover, CDCA and DCA increased the developed tension of left ventricular muscle and the cytosolic Ca2+ concentrations in left ventricular myocytes; these functions positively coordinated with their inotropic effects on hearts. Additionally, CDCA (150 µM) and DCA (100 µM) decreased the sinoatrial node beating rate to 80.6 ± 3.0% and 79.7 ± 0.9% of the basal rate (334.2 ± 10.7 bpm), respectively. These results were consistent with their chronotropic effects. In conclusion, CDCA and DCA induced positive inotropic effects by elevating the Ca2+ in left ventricular myocytes. They exerted negative chronotropic effects by lowering the pace of the sinoatrial node in rat heart. These results indicated that the potential role of bile acids in cardiopathy related to cholestasis.


Asunto(s)
Cardiotónicos/farmacología , Ácido Desoxicólico/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Calcio/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Preparación de Corazón Aislado , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley , Función Ventricular/efectos de los fármacos
15.
Front Pharmacol ; 11: 821, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581792

RESUMEN

Previous studies showed that berberine, an alkaloid from Coptis Chinensis Franch, might exert a positive inotropic effect on the heart. However, the underlying mechanisms were unclear. Here, we reported that berberine at 10-20 µM increased the left ventricular (LV) developed pressure and the maximal rate of the pressure rising, and it increased the maximal rate of the pressure descending at 20 µM in Langendorff-perfused isolated rat hearts. These effects diminished with the concentration of berberine increasing to 50 µM. In the concentration range of 50-300 µM, berberine increased the isometric tension of isolated left ventricular muscle (LVM) strips with or without electrical stimulations, and it (30-300 µM) also increased the intracellular Ca2+ level in the isolated LV myocytes. The removal of extracellular Ca2+ hindered the berberine-induced increases in the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. These suggested that berberine might exert its positive inotropic effects via enhancing Ca2+ influx. The blockade of L-type Ca2+ channels (LTCCs) with nifedipine significantly attenuated 300 µM berberine-induced tension increase in LVM strips but not the increase in the intracellular Ca2+ level. Berberine (300 µM) further increased the LVM tension following the treatment with the LTCC opener FPL-64716 (10 µM), indicating an LTCC-independent effect of berberine. Lowering extracellular Na+ attenuated the berberine-induced increases in both the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. In conclusion, berberine might exert a positive inotropic effect on the isolated rat heart by enhancing the Ca2+ influx in LV myocytes; these were extracellular Na+-dependent.

16.
Eur J Pharmacol ; 872: 172951, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32006560

RESUMEN

Bitter taste receptors (Tas2rs) initiate a bitter taste signaling involving the activation of taste-specific G protein gustducin and phosphodiesterases (PDEs); it leads to the decrease of cytosolic level of cyclic adenosine monophosphate (cAMP) in taste cells. Recent studies have identified the expression of Tas2rs in a variety of non-lingual tissues including vascular smooth muscle (VSM), pulmonary smooth muscle and airway smooth muscle. The current study aims to determine the expression of Tas2rs and gustducin in rat aortic smooth muscle tissue and to investigate the effect of Tas2rs agonist denatonium on the tone of isolated denuded aorta rings. Here we reported the expression of six subtypes of Tas2r mRNA and the taste receptor-associated G proteins in endothelium-denuded aorta. Immunostaining experiments showed that the protein of gustducin expressed in vascular smooth muscle cells (VSMCs). Furthermore, denatonium increased the tone of freshly isolated denuded aorta rings in a concentration-dependent manner, and the potentiation effect of denatonium was blocked by a Tas2rs antagonist adenosine 5'-monophosphate (5'-AMP), by the cAMP-hydrolyzing PDE inhibitors, and by a cAMP-synthesizing enzyme activator forskolin, respectively. The blockade of Gßγ signaling did not have a negative impact on the denatonium-induced tonic contractions. These findings suggested that the functional Tas2rs and gustducin are expressed in rat aortic smooth muscle and that denatonium might increase the smooth muscle tone through a Tas2rs signaling pathway involving the activation of PDEs.


Asunto(s)
Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Receptores Acoplados a Proteínas G/agonistas , Adenosina Monofosfato/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , AMP Cíclico/metabolismo , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Gusto , Transducina/metabolismo
17.
Eur J Pharmacol ; 876: 173063, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32199874

RESUMEN

Bitter taste receptors (Tas2rs), the members of the G-protein-coupled receptors, mediate the bitter taste and express in extra-oral tissues. Previous studies have shown that Tas2r mRNAs are expressed in the whole heart and cultured cardiomyocytes of neonatal rats. This study aimed to determine the expression of Tas2rs and their function in the adult rat hearts by using RT-qPCR techniques, Langendorff-perfused isolated hearts, and isolated sinoatrial (SA) nodes. The data presented here revealed the mRNA expression of Tas2rs and their coupled G-protein subunits in the SA node and left ventricle of adult rat hearts. Tas2r agonists, quinine and chloroquine, decreased the heart rate and increased the RR interval and QRS duration in Langendorff-perfused isolated rat hearts; they reduced the spontaneous beating rate of isolated SA nodes with pEC50 values of 4.907 ± 0.045 and 4.968 ± 0.030, respectively. The blockade of Tas2r108 with abscisic acid, the inhibition of phosphodiesterases (PDEs) with 3-isobutyl-1-methylxanthine (IBMX), or the selective inhibition of PDE3 and PDE4 with a cocktail of cilostamide and rolipram, attenuated the negative chronotropic effects of quinine and chloroquine on the SA node. Furthermore, quinine and chloroquine suppressed the tachycardia effect of isoprenaline on the SA node and shifted the concentration-response curve of isoprenaline rightward. In summary, we provided a few lines of evidence that Tas2r agonists, quinine and chloroquine, decreased the heart rate by prolonging ventricular depolarization, and by attenuating the SA node pace in a PDE-dependent manner; they can counteract with ß-adrenergic receptor activation and eliminate isoprenaline-induced tachycardia.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Nodo Sinoatrial/efectos de los fármacos , Animales , Cloroquina/farmacología , Expresión Génica/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Técnicas In Vitro , Preparación de Corazón Aislado , Masculino , Subunidades de Proteína , Quinina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Nodo Sinoatrial/metabolismo
18.
PLoS One ; 13(4): e0195095, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614089

RESUMEN

BACKGROUND: Understanding molecular mechanisms underlying the induction of learning and memory impairments remains a challenge. Recent investigations have shown that the activation of group I mGluRs (mGluR1 and mGluR5) in cultured hippocampal neurons by application of (S)-3,5-Dihydroxyphenylglycine (DHPG) causes the regulated internalization of N-methyl-D-aspartate receptors (NMDARs), which subsequently activates protein kinase D1 (PKD1). Through phosphorylating the C-terminals of the NMDAR GluN2 subunits, PKD1 down-regulates the activity of remaining (non-internalized) surface NMDARs. The knockdown of PKD1 does not affect the DHPG-induced inhibition of AMPA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs) but prevents the DHPG-induced inhibition of NMDAR-mediated mEPSCs in vitro. Thus, we investigated the in vivo effects of bilateral infusions of DHPG into the hippocampal CA1 area of rats in the Morris water maze (MWM) and the novel object discrimination (NOD) tests. METHODS: A total of 300 adult male Sprague Dawley rats (250-280 g) were used for behavioral tests. One hundred ninety four were used in MWM test and the other 106 rats in the NOD test. Following one week of habituation to the vivarium, rats were bilaterally implanted under deep anesthesia with cannulas aimed at the CA1 area of the hippocampus (CA1 coordinates in mm from Bregma: AP -3.14; lateral +/-2; DV -3.0). Through implanted cannulas artificial cerebrospinal fluid (ACSF), the group1 mGluR antagonist 6-Methyl-2-(phenylethynyl)pyridine (MPEP), the dynamin-dependent internalization inhibitor Dynasore, or the PKD1 inhibitor CID755673 were infused into the bilateral hippocampal CA1 areas (2 µL per side, over 5 min). The effects of these infusions and the effects of PKD1 knockdown were examined in MWM or NOD test. RESULTS: DHPG infusion increased the latency to reach the platform in the MWM test and reduced the preference for the novel object in the NOD task. We found that the DHPG effects were dose-dependent and could be maintained for up to 2 days. Notably, these effects could be prevented by pre-infusion of the group1 mGluR antagonist MPEP, the dynamin-dependent internalization inhibitor Dynasore, the PKD1 inhibitor CID755673, or by PKD1 knockdown in the hippocampal CA1 area. CONCLUSION: Altogether, these findings provide direct evidence that PKD1-mediated signaling may play a critical role in the induction of learning and memory impairments by DHPG infusion into the hippocampal CA1 area.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/fisiopatología , Aprendizaje , Memoria , Proteína Quinasa C/genética , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Técnicas de Inactivación de Genes , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/fisiopatología , Locomoción , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Metoxihidroxifenilglicol/efectos adversos , Metoxihidroxifenilglicol/análogos & derivados , Proteína Quinasa C/metabolismo , Ratas , Memoria Espacial
19.
J Neurosci ; 25(1): 139-48, 2005 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-15634775

RESUMEN

The NMDA receptor is an important subtype glutamate receptor that acts as a nonselective cation channel highly permeable to both calcium (Ca2+) and sodium (Na+). The activation of NMDA receptors produces prolonged increases of intracellular Ca2+ concentration ([Ca2+]i) and thereby triggers downstream signaling pathways involved in the regulation of many physiological and pathophysiological processes. Previous studies have focused on how Ca2+ or Na+ affects NMDA receptor activity in isolation. Specifically, [Ca2+]i increase may downregulate NMDA channels and thus is considered an important negative feedback mechanism controlling NMDA receptor activity, whereas an increase in intracellular Na+ concentration ([Na+]i) may upregulate NMDA channel activity. Thus so that the activity-dependent regulation of NMDA receptors and neuroplasticity may be further understood, a critical question that has to be answered is how an individual NMDA receptor may be regulated when both of these ionic species flow into neurons during the same time period via neighboring activated NMDA receptors. Here we report that the gating of a NMDA channel is regulated by the activation of remote NMDA receptors via a functional Na+-Ca2+ interaction and that during the activation of NMDA receptors Na+ influx potentiates Ca2+ influx on one hand and overcomes Ca2+-induced inhibition of NMDA channel gating on the other hand. Furthermore, we have identified that a critical increase (5 +/- 1 mM) in [Na+]i is required to mask the effects of Ca2+ on NMDA channel gating in cultured hippocampal neurons. Thus cross talk between NMDA receptors mediated by a functional Na+-Ca2+ interaction is a novel mechanism regulating NMDA receptor activity.


Asunto(s)
Calcio/fisiología , Activación del Canal Iónico/fisiología , Neuronas/fisiología , Receptor Cross-Talk/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sodio/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Ácido Aspártico/farmacología , Calcio/metabolismo , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Células Cultivadas , Hipocampo/citología , Activación del Canal Iónico/efectos de los fármacos , Ionóforos/farmacología , Monensina/farmacología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptor Cross-Talk/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Tapsigargina/farmacología
20.
Methods Mol Biol ; 1294: 71-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783878

RESUMEN

In the last 15 years, tremendous progress has been made in the development of single-cell cAMP sensors. Sensors are based upon cAMP-binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells. These probes take advantage of the ability of cyclic nucleotide-gated (CNG) channels to transduce small changes in cAMP concentrations into ionic flux through channel pores that can be readily detected by measuring Ca(2+) and/or Mn(2+) influx or by measuring ionic currents.


Asunto(s)
Técnicas Biosensibles/métodos , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Animales , Técnicas Biosensibles/normas , Calcio/metabolismo , Membrana Celular/fisiología , Genes Reporteros , Células HEK293 , Humanos , Manganeso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA