Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(9): 542, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153097

RESUMEN

As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 µM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.

2.
Angew Chem Int Ed Engl ; 63(28): e202320151, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38665013

RESUMEN

Developing solid-state hydrogen storage materials is as pressing as ever, which requires a comprehensive understanding of the dehydrogenation chemistry of a solid-state hydride. Transition state search and kinetics calculations are essential to understanding and designing high-performance solid-state hydrogen storage materials by filling in the knowledge gap that current experimental techniques cannot measure. However, the ab initio analysis of these processes is computationally expensive and time-consuming. Searching for descriptors to accurately predict the energy barrier is urgently needed, to accelerate the prediction of hydrogen storage material properties and identify the opportunities and challenges in this field. Herein, we develop a data-driven model to describe and predict the dehydrogenation barriers of a typical solid-state hydrogen storage material, magnesium hydride (MgH2), based on the combination of the crystal Hamilton population orbital of Mg-H bond and the distance between atomic hydrogen. By deriving the distance energy ratio, this model elucidates the key chemistry of the reaction kinetics. All the parameters in this model can be directly calculated with significantly less computational cost than conventional transition state search, so that the dehydrogenation performance of hydrogen storage materials can be predicted efficiently. Finally, we found that this model leads to excellent agreement with typical experimental measurements reported to date and provides clear design guidelines on how to propel the performance of MgH2 closer to the target set by the United States Department of Energy (US-DOE).

3.
J Org Chem ; 83(7): 4054-4069, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29557655

RESUMEN

The impact of the steric and electronic factors in both the para-substituted benzaldimine and 2,2-diarylglycine components on the regioselectivity and enantioselectivity of the palladium-catalyzed decarboxylative allylation of allyl 2,2-diarylglycinate aryl imines was explored. These studies revealed that using 2,2-di(2-methoxyphenyl)glycine as the amino acid linchpin allowed for the exclusive synthesis of the desired homoallylic benzophenone imine regioisomers, independent of the nature of the imine moiety, in typically high yields. The resulting enantiomeric ratios, however, are slightly decreased in comparison to the transformations involving the corresponding allyl 2,2-diphenylglycinate imines, but this is more than balanced out by the increases in yield and regioselectivity. Overall, these studies suggest a general strategy for the highly regioselective functionalization of 2-azaallyl anions.

4.
Adv Sci (Weinh) ; : e2404194, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119933

RESUMEN

Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is a potential way to produce green NH3 and remediate the nitrogen cycle. In this paper, an efficient catalyst of spherical CuO made by stacking small particles with oxygen-rich vacancies is reported. The NH3 yield and Faraday efficiency are 15.53 mg h-1 mgcat -1 and 90.69%, respectively, in a neutral electrolyte at a voltage of -0.80 V (vs. reversible hydrogen electrode). The high activity of the electrodes results from changes in the phase and structure during electrochemical reduction. Structurally, there is a shift from a spherical structure with dense accumulation of small particles to a layered network structure with uniform distribution of small particles stacked on top of each other, thus exposing more active sites. Furthermore, in terms of phase, the electrode transitions from CuO to Cu/Cu(OH)2. Density functional theory calculations showed that Cu(OH)2 formation enhances NO3- adsorption. Meanwhile, the Cu(OH)2 can inhibit the competing hydrogen evolution reaction, while the formation of Cu (111) crystal surfaces facilitates the hydrogenation reaction. The synergistic effect between the two promotes the NO3- to NH3. Therefore, this study provides a new idea and direction for Cu-based oxides in electrocatalytic NH3 production.

5.
Mater Horiz ; 11(12): 2875-2885, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38545861

RESUMEN

The growing need for high-power and compact-size microelectronic integrated circuits (ICs) in modern microelectronic industries and 5G communication systems demands low dielectric constant (κ) polymer dielectrics with excellent temperature capability, mechanical property and processability. However, conventional molecular design strategies often face difficulties of a trade-off between optimizing the dielectric performance of polymers and maintaining the aforementioned properties. Herein, we present an innovative and facile strategy that utilizes the space charge distribution characteristics of the target co-monomer to solve this trade-off. Based on this design strategy, a novel polyaryl ether ketone (PAEK) with two different charge distribution units (BAF and SBI) was designed and synthesized. Both the experimental results and computational simulations confirm that these two components serve to weaken the polarization of molecular chains in the electric field, induce higher molecular chain packing density and fewer weaknesses, and synchronously regulate the κ, dielectric loss (tan δ), thermal and mechanical properties and processability by generating a strong inter-chain electrostatic interaction. The resultant copolymer, PAEK-4F6S, exhibits exceptional low κ and tan δ values of 1.98 and 0.0024 at 1 MHz, respectively, and these values remain stable over a broad frequency (1-106 Hz, 8.2-12.4 GHz) and temperature range (30-150 °C). Furthermore, the resultant copolymer demonstrates excellent thermal stability and mechanical properties, with a glass transition temperature (Tg) of 195 °C, 5 wt% decomposition temperature (Td5%) of 498 °C under N2, tensile strength of 63.5 MPa and tensile modulus of 1011.2 MPa, respectively. The synthesis procedure of these resultant copolymers is facile, and they are found to have favorable solution and melt processing properties, making them suitable for processing and scalable production. More importantly, this design strategy is beneficial for lowering the κ and tan δ values, and simultaneously enhancing the comprehensive performances of the objective polymers, which provides a completely novel and facile approach for the design and fabrication of high performance low-κ polymers suitable for the needs of microelectronics and communication fields.

6.
Dalton Trans ; 52(37): 13413-13425, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37691619

RESUMEN

N-doped carbon materials are known for their high conductivity, rich N content, and high adsorption activity. When combined with Fe2O3 to form nanocomposites, they can improve the conductivity of Fe2O3 and cause significant changes in the electrochemical sensing interface with the influence of their unique electronic structure. In this work, N-doped carbon nanocomposites (Fe2O3@NCNPs-x) modified with Fe2O3 nanoparticles (Fe2O3 NPs) were synthesized by a simple emulsion polymerization method and carbonized under Ar at a high temperature. X-ray photoelectron spectroscopy indicated that compared with undoped Fe2O3 NPs, the π bond of Fe2O3@NCNPs-1.5 was negatively charged due to the lone pair of electrons near the N atom, acting as an electron donor that enhanced the interaction with HMIs and electron transport, therefore generating more active sites on the surface of Fe2O3@NCNPs-1.5. The obtained Fe2+/Fe3+ ratio was about two times higher than that of undoped Fe2O3 NPs (Fe2O3@NCNPs-1.5: Fe2+/Fe3+ = 1.24; Fe2O3 NPs: Fe2+/Fe3+ = 0.61). The surface oxygen vacancy (OV) concentration reached the maximum level (Fe2O3@NCNPs-1.5: OVs/O1s = 41.7%; Fe2O3 NPs: OVs/O1s = 22%). Fe2O3@NCNPs-1.5/GCE also showed enhanced electrochemical performance for detecting Pb2+ and Cd2+, with a limit of detection (LOD, S/N = 3) of 4.92 and 18.79 nM, respectively. Electrochemical adsorption tests suggested that Fe2O3@NCNPs-1.5/GCE had the strongest adsorption capacity for Pb2+ and Cd2+ in comparison with other modified electrodes, suggesting that different N contents led to different absorbability for heavy metal ions (HMIs). Therefore, when the metal oxide nanoparticles are loaded on compatible carriers, the jointly constructed nanocomposites can be used as the active materials for efficiently detecting HMIs, providing a new concept for designing highly active electrochemical sensors.

7.
Dalton Trans ; 52(45): 16670-16679, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37916428

RESUMEN

Electrocatalytic nitrogen reduction (NRR) for artificial ammonia synthesis under ambient conditions is considered a promising alternative to the traditional Haber-Bosch process. However, it still faces multiple challenges such as the difficulty of N2 adsorption and activation and limited Faraday efficiency. In this work, a bimetallic oxide MnMoO4 was prepared by a hydrothermal method and low temperature calcination. The influence of the sintering temperature on the microstructure (crystallinity and oxygen vacancies) of the oxide and its NRR properties were systematically explored. The results showed that MnMoO4 sintered at 500 °C had the highest concentration of OVs and showed excellent NRR performance, with the highest NH3 yield (up to 12.28 µg h-1 mgcat-1), high Faraday efficiency (23.04% at -0.30 V vs. RHE), and good stability at -0.40 V vs. RHE, and the catalytic performance was about two times higher than that of Mn2O3 and MoO3. It is also superior to other bimetallic oxide NRR electrocatalysts reported in some cases. In addition, we also explored the ratio between Mn and Mo metals, and the catalytic effect was the best when Mn : Mo = 1 : 1. Due to the synergistic effect between Mn and Mo metals and the large number of OVs present internally, the catalytic activity for the NRR was largely improved. This study suggests that the bimetallic oxide MnMoO4 may be a promising NRR electrocatalyst.

8.
Dalton Trans ; 49(23): 7796-7806, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32459241

RESUMEN

Pincer ligands have a remarkable ability to impart control over small molecule activation chemistry and catalytic activity; therefore, the design of new pincer ligands and the exploration of their reactivity profiles continues to be a frontier in synthetic inorganic chemistry. In this work, a novel, monoanionic NNN pincer ligand containing two phosphinimine donors was used to create a series of mononuclear Ni complexes. Ligand metallation in the presence of NaOPh yielded a nickel phenoxide complex that was used to form a mononuclear hydride complex on treatment with pinacolborane. Attempts at ligand metallation with NaN(SiMe3)2 resulted in the activation of both phosphinimine methyl groups to yield an anionic, cis-dialkyl product, in which dissociation of one phosphinimine nitrogen leads to retention of a square planar coordination environment about Ni. Protonolysis of this dialkyl species generated a monoalkyl product that retained the 4-membered metallacycle. The insertion of 2,6-dimethylphenyl isocyanide (xylNC) into this nickel metallacycle, followed by proton transfer, generated a new five-membered nickel metallacycle. Kinetic studies suggested rate-limiting proton transfer (KIE ≥ 3.9 ± 0.5) from the α-methylene unit of the putative iminoacyl intermediate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA