RESUMEN
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
Asunto(s)
Mitocondrias , Proteoma , Proteoma/metabolismo , Mitocondrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometría de Masas/métodos , Regulación de la Expresión GénicaRESUMEN
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Asunto(s)
Mitocondrias , Proteómica , Retículo Endoplásmico , BiotinaRESUMEN
Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.
Asunto(s)
Células Dendríticas , Proteoma , Humanos , Células Dendríticas/inmunología , Transducción de Señal/inmunología , Membrana Celular/metabolismo , Membrana Celular/inmunología , Células Cultivadas , Receptores Toll-Like/metabolismo , Proteómica/métodosRESUMEN
Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (Anolis sagrei) were the native top predator, we experimentally staged invasions by competitors (green anoles, Anolis smaragdinus) and/or new top predators (curly-tailed lizards, Leiocephalus carinatus). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect-in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.
Asunto(s)
Biodiversidad , Cadena Alimentaria , Lagartos/fisiología , Conducta Predatoria , Animales , Evolución Biológica , Biota , Conducta Competitiva , Conducta Alimentaria , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Indias OccidentalesRESUMEN
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Asunto(s)
Ecosistema , Microbiota , Humanos , Bacterias , Biota , Procesos EstocásticosRESUMEN
Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 µg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.
Asunto(s)
Organismos Acuáticos , Agua Dulce , Bacterias/genética , Biodiversidad , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Irisin, which is cleaved from fibronectin type III domain-containing protein 5 (Fndc5), plays an important role in energy homeostasis. The link between energy metabolism and reproduction is well known. However, the biological actions of irisin in reproduction remain largely unexplored. METHODS: In this study, we generated Fndc5 gene mutation to create irisin deficient mice. Female wild-type (WT) and Fndc5 mutant mice were fed with standard chow for 48 weeks. Firstly, the survival rate, body weight and fertility were described in mice. Secondly, the levels of steroid hormones in serum were measured by ELISA, and the estrus cycle and the appearance of follicles were determined by vaginal smears and ovarian continuous sections. Thirdly, mRNA-sequencing analysis was used to compare gene expression between the ovaries of Fndc5 mutant mice and those of WT mice. Finally, the effects of exogenous irisin on steroid hormone production was investigated in KGN cells. RESULTS: The mice lacking irisin presented increased mortality, reduced body weight and poor fertility. Analysis of sex hormones showed decreased levels of estradiol, follicle-stimulating hormone and luteinizing hormone, and elevated progesterone levels in Fndc5 mutant mice. Irisin deficiency in mice was associated with irregular estrus, reduced ratio of antral follicles. The expressions of Akr1c18, Mamld1, and Cyp19a1, which are involved in the synthesis of steroid hormones, were reduced in the ovaries of mutant mice. Exogenous irisin could promote the expression of Akr1c18, Mamld1, and Cyp19a1 in KGN cells, stimulating estradiol production and inhibiting progesterone secretion. CONCLUSIONS: Irisin deficiency was related to disordered endocrinology metabolism in mice. The irisin deficient mice showed poor growth and development, and decreased fertility. Irisin likely have effects on the expressions of Akr1c18, Mamld1 and Cyp19a1 in ovary, regulating the steroid hormone production. This study provides novel insights into the potential role of irisin in mammalian growth and reproduction.
Asunto(s)
Fertilidad/genética , Fibronectinas/genética , Crecimiento y Desarrollo/genética , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Células de la Granulosa/fisiología , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiologíaRESUMEN
The receptor activator of NF-κB ligand-induced osteoclast differentiation has a critical role in the process of bone metabolism. Overactivation of osteoclastogenesis may result in a series of diseases. Irisin, a novel myokine, which was first reported in 2012, has been proposed to mediate the beneficial metabolic effects of exercise. Studies have demonstrated that irisin targets osteoblasts by promoting osteoblast proliferation and differentiation; however, the underlying mechanism regarding the effect of irisin on osteoclasts remains elusive. Using 2 types of osteoclast precursor cells, RAW264.7 cells and mouse bone marrow monocytes, we showed that irisin promoted osteoclast precursor cell proliferation but inhibited osteoclast differentiation. Irisin down-regulated the expression of osteoclast differentiation marker genes, including receptor activators of NF-κB, nuclear factor of activated T cells, cytoplasmic 1, cathepsin K, and tartrate-resistant acid phosphatase (TRAP), as well as decreasing the number of TRAP-positive multinucleated cells and hydroxyapatite resorption pits. Furthermore, we showed that irisin suppressed the NF-κB signaling pathway, but activated the p38 and JNK signaling pathways. In the presence of an inhibitor of p38 and JNK, irisin-induced promotion of RAW264.7 cell proliferation was attenuated. However, irisin-induced inhibition of osteoclast differentiation was not affected by either the p38 or JNK signaling pathway. Our study suggested the direct effect of irisin on osteoclastogenesis and revealed the mechanism responsible for the therapeutic potential of irisin in bone metabolism disease.-Ma, Y., Qiao, X., Zeng, R., Cheng, R., Zhang, J., Luo, Y., Nie, Y., Hu, Y., Yang, Z., Zhang, J., Liu, L., Xu, W., Xu, C. C., Xu, L. Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells.
RESUMEN
In many data-driven applications, higher-order relationships among multiple objects are essential in capturing complex interactions. Hypergraphs, which generalize graphs by allowing edges to connect any number of nodes, provide a flexible and powerful framework for modeling such higher-order relationships. In this work, we introduce hypergraph diffusion wavelets and describe their favorable spectral and spatial properties. We demonstrate their utility for biomedical discovery in spatially resolved transcriptomics by applying the method to represent disease-relevant cellular niches for Alzheimer's disease.
RESUMEN
The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules, uncovering a role for stress granules in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID introduces a powerful approach for distinguishing protein populations based on compartment or cell type of origin.
RESUMEN
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
RESUMEN
All species of big cats, including tigers, cheetahs, leopards, lions, snow leopards, and jaguars, are protected under the Convention on the International Trade in Endangered Species (CITES). This is due in large part to population declines resulting from anthropogenic factors, especially poaching and the unregulated and illegal trade in pelts, bones, teeth and other products that are derived from these iconic species. To enhance and scale up monitoring for big cat products in this trade, we created a rapid multiplex qPCR test that can identify and differentiate DNA from tiger (Panthera tigris), cheetah (Acinonyx jubatus), leopard (Panthera pardus), lion (Panthera leo), snow leopard (Panthera uncia), and jaguar (Panthera onca) in wildlife products using melt curve analysis to identify each species by its unique melt peak temperature. Our results showed high PCR efficiency (> 90%), sensitivity (detection limit of 5 copies of DNA per PCR reaction) and specificity (no cross amplification between each of the 6 big cat species). When paired with a rapid (< 1 h) DNA extraction protocol that amplifies DNA from bone, teeth, and preserved skin, total test time is less than three hours. This test can be used as a screening method to improve our understanding of the scale and scope of the illegal trade in big cats and aid in the enforcement of international regulations that govern the trade in wildlife and wildlife products, both ultimately benefiting the conservation of these species worldwide.
Asunto(s)
Acinonyx , Leones , Panthera , Tigres , Animales , Comercio de Vida Silvestre , Comercio , Internacionalidad , Panthera/genética , Tigres/genética , Leones/genética , Acinonyx/genética , ADN/genética , Animales Salvajes/genéticaRESUMEN
Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.
Asunto(s)
Neoplasias Pulmonares , Proteoma , Masculino , Humanos , Proteoma/metabolismo , Flujo de Trabajo , Péptidos , Proteómica/métodosRESUMEN
Species composition in high-alpine ecosystems is a useful indicator for monitoring climatic and environmental changes at the upper limits of habitable environments. We used environmental DNA (eDNA) analysis to document the breadth of high-alpine biodiversity present on Earth's highest mountain, Mt. Everest (8,849 m a.s.l.) in Nepal's Khumbu region. In April-May 2019, we collected eDNA from ten ponds and streams between 4,500 m and 5,500 m. Using multiple sequencing and bioinformatic approaches, we identified taxa from 36 phyla and 187 potential orders across the Tree of Life in Mt. Everest's high-alpine and aeolian ecosystem. These organisms, all recorded above 4,500 m-an elevational belt comprising <3% of Earth's land surface-represents â¼16% of global taxonomic order estimates. Our eDNA inventory will aid future high-Himalayan biomonitoring and retrospective molecular studies to assess changes over time as climate-driven warming, glacial melt, and anthropogenic influences reshape this rapidly transforming world-renowned ecosystem.
RESUMEN
Organ functions are highly specialized and interdependent. Secreted factors regulate organ development and mediate homeostasis through serum trafficking and inter-organ communication. Enzyme-catalysed proximity labelling enables the identification of proteins within a specific cellular compartment. Here, we report a BirA*G3 mouse strain that enables CRE-dependent promiscuous biotinylation of proteins trafficking through the endoplasmic reticulum. When broadly activated throughout the mouse, widespread labelling of proteins was observed within the secretory pathway. Streptavidin affinity purification and peptide mapping by quantitative mass spectrometry (MS) proteomics revealed organ-specific secretory profiles and serum trafficking. As expected, secretory proteomes were highly enriched for signal peptide-containing proteins, highlighting both conventional and non-conventional secretory processes, and ectodomain shedding. Lower-abundance proteins with hormone-like properties were recovered and validated using orthogonal approaches. Hepatocyte-specific activation of BirA*G3 highlighted liver-specific biotinylated secretome profiles. The BirA*G3 mouse model demonstrates enhanced labelling efficiency and tissue specificity over viral transduction approaches and will facilitate a deeper understanding of secretory protein interplay in development, and in healthy and diseased adult states.
Asunto(s)
Modelos Genéticos , Secretoma , Animales , Biotinilación , Mamíferos , Espectrometría de Masas/métodos , Ratones , Proteómica/métodosRESUMEN
Protected areas are key to meeting biodiversity conservation goals, but direct measures of effectiveness have proven difficult to obtain. We address this challenge by using environmental DNA from leech-ingested bloodmeals to estimate spatially-resolved vertebrate occupancies across the 677 km2 Ailaoshan reserve in Yunnan, China. From 30,468 leeches collected by 163 park rangers across 172 patrol areas, we identify 86 vertebrate species, including amphibians, mammals, birds and squamates. Multi-species occupancy modelling shows that species richness increases with elevation and distance to reserve edge. Most large mammals (e.g. sambar, black bear, serow, tufted deer) follow this pattern; the exceptions are the three domestic mammal species (cows, sheep, goats) and muntjak deer, which are more common at lower elevations. Vertebrate occupancies are a direct measure of conservation outcomes that can help guide protected-area management and improve the contributions that protected areas make towards global biodiversity goals. Here, we show the feasibility of using invertebrate-derived DNA to estimate spatially-resolved vertebrate occupancies across entire protected areas.
Asunto(s)
Ciervos , Sanguijuelas , Animales , Biodiversidad , Bovinos , China , Conservación de los Recursos Naturales , Femenino , Mamíferos/genética , Ovinos , Vertebrados/genéticaRESUMEN
The study of protective film formation on Mg alloys by exposure to sodium selenite solutions was conducted. Anodic polarization studies, electrochemical impedance spectroscopy studies, morphological analysis, and Energy-dispersive X-ray spectroscopy were performed on AZ31 Mg alloy after coating treatment in different concentrations of sodium selenite. The corrosion resistance was improved by around 5 times compared with control. Improved resistance to localized corrosion was observed in the coatings treated by 5 mM or 10 mM sodium selenite. The protection mechanism was ascribed to the transformation of selenite to insoluble selenium, the formation of insoluble MgSeO3 hydrate, and polymerization of amorphous selenium.
RESUMEN
Representation is crucial in building more inclusive communities in science, technology, engineering, mathematics, and medicine (STEMM) fields. STEMM Diversity is a student-driven initiative that was founded to promote equity, diversity, and inclusion (EDI) at McGill University. Here, we discuss the lessons learned while developing STEMM Diversity that can help guide others to develop their own student-driven initiatives.
Asunto(s)
Ingeniería , Estudiantes , Humanos , MatemáticaRESUMEN
We demonstrate that simple, non-invasive environmental DNA (eDNA) methods can detect transgenes of genetically modified (GM) animals from terrestrial and aquatic sources in invertebrate and vertebrate systems. We detected transgenic fragments between 82-234 bp through targeted PCR amplification of environmental DNA extracted from food media of GM fruit flies (Drosophila melanogaster), feces, urine, and saliva of GM laboratory mice (Mus musculus), and aquarium water of GM tetra fish (Gymnocorymbus ternetzi). With rapidly growing accessibility of genome-editing technologies such as CRISPR, the prevalence and diversity of GM animals will increase dramatically. GM animals have already been released into the wild with more releases planned in the future. eDNA methods have the potential to address the critical need for sensitive, accurate, and cost-effective detection and monitoring of GM animals and their transgenes in nature.
Asunto(s)
Animales Modificados Genéticamente/genética , ADN Ambiental/genética , Transgenes/genética , Animales , Characidae/genética , Drosophila melanogaster/genética , Monitoreo del Ambiente/métodos , Ratones/genéticaRESUMEN
Irisin is a product of fibronectin type III domain-containing protein (Fndc5) and is involved in the regulation of adipokine secretion and the differentiation of osteoblasts and osteoclasts. In this study, we aimed to determine whether irisin lacking affects glucose/lipid and bone metabolism. We knocked out the Fndc5 gene to generate irisin-lacking mice. Remarkable, irisin lacking was related to poor 'browning response', with a bigger size of the intraperitoneal white adipose cell and decreased a number of brown adipose cells in brown adipose of interscapular tissue. The irisin lacking mice had hyperlipidemia and insulin resistance, reduced HDL-cholesterol level, increased LDL-cholesterol level, and decreased insulin sensitivity. The lacking of irisin was associated with reduced bone strength and bone mass in mice. The increased number of osteoclasts and higher expression of RANKL indicated increased bone resorption in irisin lacking mice. The level of IL-6 and TNF-α also increased in irisin lacking mice. The results showed that irisin lacking was related to decreased 'browning response', glucose/lipid metabolic derangement, and reduced bone mass with increased bone resorption. Further studies are needed to confirm these initial observations and explore the mechanisms underlying the effects of irisin on glucose/lipid and bone metabolism.