Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(2): 298-323, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847093

RESUMEN

The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.


Asunto(s)
Grano Comestible , Oryza , Grano Comestible/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Productos Agrícolas , Fosfatos/metabolismo
2.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214208

RESUMEN

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Semillas/genética , Endospermo/metabolismo , Grano Comestible/metabolismo , Almidón/metabolismo , Ácidos Indolacéticos/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell ; 34(10): 4045-4065, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35863053

RESUMEN

Forming mutualistic symbioses with arbuscular mycorrhizae (AMs) improves the acquisition of mineral nutrients for most terrestrial plants. However, the formation of AM symbiosis usually occurs under phosphate (Pi)-deficient conditions. Here, we identify SlSPX1 (SYG1 (suppressor of yeast GPA1)/Pho81(phosphate 81)/XPR1 (xenotropic and polytropic retrovirus receptor 1) as the major repressor of the AM symbiosis in tomato (Solanum lycopersicum) under phosphate-replete conditions. Loss of SlSPX1 function promotes direct Pi uptake and enhances AM colonization under phosphate-replete conditions. We determine that SlSPX1 integrates Pi signaling and AM symbiosis by directly interacting with a set of arbuscule-induced SlPHR proteins (SlPHR1, SlPHR4, SlPHR10, SlPHR11, and SlPHR12). The association with SlSPX1 represses the ability of SlPHR proteins to activate AM marker genes required for the arbuscular mycorrhizal symbiosis. SlPHR proteins exhibit functional redundancy, and no defective AM symbiosis was detected in the single mutant of SlPHR proteins. However, silencing SlPHR4 in the Slphr1 mutant background led to reduced AM colonization. Therefore, our results support the conclusion that SlSPX1-SlPHRs form a Pi-sensing module to coordinate the AM symbiosis under different Pi-availability conditions.


Asunto(s)
Micorrizas , Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Minerales/metabolismo , Micorrizas/fisiología , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/fisiología
4.
Nucleic Acids Res ; 51(14): 7666-7674, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351632

RESUMEN

The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.


Asunto(s)
Aflatoxina B1 , Aptámeros de Nucleótidos , Aflatoxina B1/química , Aflatoxina B1/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles , Límite de Detección
5.
J Am Chem Soc ; 146(7): 4741-4751, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346932

RESUMEN

G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures with diverse topological features and biological roles. Human telomeric (Htelo) overhangs consisting of TTAGGG repeats can fold into G4s that adopt different topologies under physiological conditions. These G4s are potential targets for anticancer drugs. Despite intensive research, the existence and topology of G4s at Htelo overhangs in vivo are still unclear because there is no method to distinguish and quantify the topology of Htelo overhangs with native lengths that can form more than three tandem G4s in living cells. Herein, we present a novel 19F chemical shift fingerprinting technique to identify and quantify the topology of the Htelo overhangs up to five G-quadruplexes (G4s) and 120 nucleotides long both in vitro and in living cells. Our results show that longer overhang sequences tend to form stable G4s at the 5'- and 3'-ends, while the interior G4s are dynamic and "sliding" along the sequence, with TTA or 1-3 TTAGGG repeats as a linker. Each G4 in the longer overhang is conformationally heterogeneous, but the predominant ones are hybrid-2, two- or three-tetrad antiparallel, and hybrid-1 at the 5'-terminal, interior, and 3'-terminal, respectively. Additionally, we observed a distinct behavior of different lengths of telomeric sequences in living cells, suggesting that the overhang length and protein accessibility are related to its function. This technique provides a powerful tool for quickly identifying the folding topology and relative population of long Htelo overhangs, which may provide valuable insights into telomere functionality and be beneficial for structure-based anticancer drug development targeting G4s.


Asunto(s)
G-Cuádruplex , Humanos , Telómero , Nucleótidos , Espectroscopía de Resonancia Magnética
6.
Planta ; 259(6): 148, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717679

RESUMEN

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitrógeno , Oryza , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/efectos de los fármacos , Mutación , Nitrógeno/metabolismo , Nitrógeno/farmacología , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Physiol ; 193(3): 2003-2020, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37527483

RESUMEN

High-affinity potassium (K+) transporter (HAK)/K+ uptake permease (KUP)/K+ transporter (KT) have been identified in all genome-sequenced terrestrial plants. They play an important role in K+ acquisition and translocation and in enhancing salt tolerance. Here, we report that plasma membrane-located OsHAK18 functions in K+ and sodium (Na+) circulation and sugar translocation in rice (Oryza sativa). OsHAK18 was expressed mainly, though not exclusively, in vascular tissues and particularly in the phloem. Knockout (KO) of OsHAK18 reduced K+ concentration in phloem sap and roots but increased K+ accumulation in the shoot of both 'Nipponbare' and 'Zhonghua11' cultivars, while overexpression (OX) of OsHAK18 driven by its endogenous promoter increased K+ concentration in phloem sap and roots and promoted Na+ retrieval from the shoot to the root under salt stress. Split-root experimental analysis of rubidium (Rb+) uptake and circulation indicated that OsHAK18-OX promoted Rb+ translocation from the shoot to the root. In addition, OsHAK18-KO increased while OsHAK18-OX reduced soluble sugar content in the shoot and oppositely affected the sugar concentration in the phloem and its content in the root. Moreover, OsHAK18-OX dramatically increased grain yield and physiological K+ utilization efficiency. Our results suggest that-unlike other OsHAKs analyzed heretofore-OsHAK18 is critical for K+ and Na+ recirculation from the shoot to the root and enhances the source-to-sink translocation of photo-assimilates.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Azúcares , Potasio/metabolismo , Sodio/metabolismo , Proteínas de Transporte de Membrana , Raíces de Plantas/metabolismo
8.
J Exp Bot ; 75(2): 503-507, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197460

RESUMEN

Plant roots fulfil crucial tasks during a plant's life. As roots encounter very diverse conditions while exploring the soil for resources, their growth and development must be responsive to changes in the rhizosphere, resulting in root architectures that are tailor-made for all prevailing circumstances. Using multi-disciplinary approaches, we are gaining more intricate insights into the regulatory mechanisms directing root system architecture. This Special Issue provides insights into our advancement of knowledge on different aspects of root development and identifies opportunities for future research.


Asunto(s)
Interacciones Microbianas , Rizosfera , Suelo
9.
J Exp Bot ; 75(2): 526-537, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419655

RESUMEN

Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.


Asunto(s)
Raíces de Plantas , Plantas , Agricultura , Raíces de Plantas/microbiología , Rizosfera
10.
J Exp Bot ; 75(11): 3388-3400, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497798

RESUMEN

Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.


Asunto(s)
Arabidopsis , Bacillus , Nitrógeno , Oryza , Transducción de Señal , Bacillus/metabolismo , Bacillus/fisiología , Bacillus/genética , Nitrógeno/metabolismo , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Compuestos Orgánicos Volátiles/metabolismo
11.
J Nanobiotechnology ; 22(1): 80, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418972

RESUMEN

The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.


Asunto(s)
Antiinfecciosos , Curcumina , Infección de Heridas , Animales , Porcinos , Hidrogeles/farmacología , Cicatrización de Heridas , Biomimética , Vendajes , Antibacterianos/uso terapéutico , Materiales Biocompatibles , Inmunoterapia , Infección de Heridas/tratamiento farmacológico
12.
Plant Biotechnol J ; 21(12): 2654-2670, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37623700

RESUMEN

Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.


Asunto(s)
Oryza , Nitrógeno/metabolismo , Grano Comestible , Amilosa/metabolismo , Culinaria
13.
New Phytol ; 239(2): 673-686, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37194447

RESUMEN

Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.


Asunto(s)
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Fósforo/metabolismo , Lactonas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Plant Physiol ; 188(4): 2272-2288, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088867

RESUMEN

Inorganic phosphate (Pi) is the predominant form of phosphorus (P) readily accessible to plants, and Pi Transporter 1 (PHT1) genes are the major contributors to root Pi uptake. However, the mechanisms underlying the transport and recycling of Pi within plants, which are vital for optimizing P use efficiency, remain elusive. Here, we characterized a functionally unknown rice (Oryza sativa) PHT1 member barely expressed in roots, OsPHT1;7. Yeast complementation and Xenopus laevis oocyte assay demonstrated that OsPHT1;7 could mediate Pi transport. Reverse-transcription quantitative polymerase chain reaction and histochemical analyses showed that OsPHT1;7 was preferentially expressed in source leaves and nodes. A further fine-localization analysis by immunostaining showed that OsPHT1;7 expression was restricted in the vascular bundle (VB) sheath and phloem of source leaves as well as in the phloem of regular/diffuse- and enlarged-VBs of nodes. In accordance with this expression pattern, mutation of OsPHT1;7 led to increased and decreased P distribution in source (old leaves) and sink organs (new leaves/panicles), respectively, indicating that OsPHT1;7 is involved in P redistribution. Furthermore, OsPHT1;7 showed an overwhelmingly higher transcript abundance in anthers than other PHT1 members, and ospht1;7 mutants were impaired in P accumulation in anthers but not in pistils or husks. Moreover, the germination of pollen grains was significantly inhibited upon OsPHT1;7 mutation, leading to a >80% decrease in seed-setting rate and grain yield. Taken together, our results provide evidence that OsPHT1;7 is a crucial Pi transporter for Pi transport and recycling within rice plants, stimulating both vegetative and reproductive growth.


Asunto(s)
Oryza , Proteínas de Transporte de Fosfato , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
15.
Plant Physiol ; 189(3): 1608-1624, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35512346

RESUMEN

Plants adjust root architecture and nitrogen (N) transporter activity to meet the variable N demand, but their integrated regulatory mechanism remains unclear. We have previously reported that a floral factor in rice (Oryza sativa), N-mediated heading date-1 (Nhd1), regulates flowering time. Here, we show that Nhd1 can directly activate the transcription of the high-affinity ammonium (NH4+) transporter 1;3 (OsAMT1;3) and the dual affinity nitrate (NO3-) transporter 2.4 (OsNRT2.4). Knockout of Nhd1 inhibited root growth in the presence of NO3- or a low concentration of NH4+. Compared to the wild-type (WT), nhd1 and osamt1;3 mutants showed a similar decrease in root growth and N uptake under low NH4+ supply, while nhd1 and osnrt2.4 mutants showed comparable root inhibition and altered NO3- translocation in shoots. The defects of nhd1 mutants in NH4+ uptake and root growth response to various N supplies were restored by overexpression of OsAMT1;3 or OsNRT2.4. However, when grown in a paddy field with low N availability, nhd1 mutants accumulated more N and achieved a higher N uptake efficiency (NUpE) due to the delayed flowering time and prolonged growth period. Our findings reveal a molecular mechanism underlying the growth duration-dependent NUpE.


Asunto(s)
Compuestos de Amonio , Oryza , Compuestos de Amonio/metabolismo , Proteínas de Transporte de Anión/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Exp Bot ; 74(5): 1460-1474, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516424

RESUMEN

Interdependent metabolic and transport processes of carbon (C) and nitrogen (N) regulate plant growth and development, while the regulatory pathways remain poorly defined. We previously reported that rice circadian clock N-mediated heading date-1 (Nhd1) regulates growth duration-dependent N use efficiency. Here, we report that knockout of Nhd1 in rice reduced the rate of photosynthesis and the sucrose ratio of sheaths to blades, but increased the total C to N ratio and free amino acids. Leaf RNA-seq analysis indicated that mutation of Nhd1 dramatically altered expression of the genes linked to starch and sucrose metabolism, circadian rhythm, and amino acid metabolic pathways. We identified that Nhd1 can directly activate the transcriptional expression of sucrose transporter-1 (OsSUT1). Knockout of Nhd1 suppressed OsSUT1 expression, and both nhd1 and ossut1 mutants showed similar shorter height, and lower shoot biomass and sucrose concentration in comparison with the wild type, while overexpression of OsSUT1 can restore the defective sucrose transport and partially ameliorate the reduced growth of nhd1 mutants. The Nhd1-binding site of the OsSUT1 promoter is conserved in all known rice genomes. The positively related variation of Nhd1 and OsSUT1 expression among randomly selected indica and japonica varieties suggests a common regulatory module of Nhd1-OsSUT1-mediated C and N balance in rice.


Asunto(s)
Relojes Circadianos , Oryza , Oryza/metabolismo , Sacarosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
J Exp Bot ; 74(14): 4143-4157, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010326

RESUMEN

Plant amino acid transporters regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also the amount of amino acids in leaves hijacked by invading pathogens. However, the function of amino acid transporters in plant defense responses to pathogen infection remains unknown. In this study, we found that the rice amino acid transporter gene OsLHT1 was expressed in leaves and up-regulated by maturation, N starvation, and inoculation of the blast fungus Magnaporthe oryzae. Knock out of OsLHT1 resulted in development stage- and N supply-dependent premature senescence of leaves at the vegetative growth stage. In comparison with the wild type, Oslht1 mutant lines showed sustained rusty red spots on fully mature leaf blades irrespective of N supply levels. Notably, no relationship between the severity of leaf rusty red spots and concentration of total N or amino acids was found in Oslht1 mutants at different developmental stages. Disruption of OsLHT1 altered transport and metabolism of amino acids and biosynthesis of flavones and flavonoids, enhanced expression of jasmonic acid- and salicylic acid-related defense genes, production of jasmonic acid and salicylic acid, and accumulation of reactive oxygen species. OsLHT1 inactivation dramatically prevented the leaf invasion by M. oryzae, a hemi-biotrophic ascomycete fungus. Overall, these results establish a link connecting the activity of an amino acid transporter with leaf metabolism and defense against rice blast fungus.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiología , Senescencia de la Planta , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Salicilatos/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo
18.
J Exp Bot ; 74(3): 1074-1089, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36402551

RESUMEN

Plants have evolved delicate systems for stimulating or inhibiting inorganic phosphate (Pi) uptake in response to the fluctuating Pi availability in soil. However, the negative regulators inhibiting Pi uptake at the transcriptional level are largely unexplored. Here, we functionally characterized a transcription factor in rice (Oryza sativa), OsWRKY10. OsWRKY10 encodes a nucleus-localized protein and showed preferential tissue localization. Knockout of OsWRKY10 led to increased Pi uptake and accumulation under Pi-replete conditions. In accordance with this phenotype, OsWRKY10 was transcriptionally induced by Pi, and a subset of PHOSPHATE TRANSPORTER 1 (PHT1) genes were up-regulated upon its mutation, suggesting that OsWRKY10 is a transcriptional repressor of Pi uptake. Moreover, rice plants expressing the OsWRKY10-VP16 fusion protein (a dominant transcriptional activator) accumulated even more Pi than oswrky10. Several lines of biochemical evidence demonstrated that OsWRKY10 directly suppressed OsPHT1;2 expression. Genetic analysis showed that OsPHT1;2 was responsible for the increased Pi accumulation in oswrky10. Furthermore, during Pi starvation, OsWRKY10 protein was degraded through the 26S proteasome. Altogether, the OsWRKY10-OsPHT1;2 module represents a crucial loop in the Pi signaling network in rice, inhibiting Pi uptake when there is ample Pi in the environment.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Raíces de Plantas/metabolismo
19.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071813

RESUMEN

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Asunto(s)
Helechos , Proteínas de Transporte de Membrana , Metales de Tierras Raras , Membrana Celular , Helechos/metabolismo , Zinc/metabolismo
20.
J Phys Chem A ; 127(22): 4787-4792, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37245158

RESUMEN

As important species in the D region of the ionosphere, hydrated nitrosonium ion clusters [NO+(H2O)n] are also archetypal and concise models to illustrate effects of different solvent shells. We have investigated noncovalent interactions in NO+(H2O)3 and NO+(H2O)4 isomers with high levels of ab initio and symmetry-adapted perturbation theory (SAPT) methods. On the basis of our computations, the exchange energies become much more repulsive, whereas the induction energies are significantly more attractive for the noncovalent interactions of NO+ with hydrogen-bonded water chains. Combined with analyses of the electron densities for the NO+(H2O)3 and NO+(H2O)4 isomers, we propose that the counteracting effect of the exchange and induction energies could be deemed as an index for the tendency to form the HO-NO covalent bond. Moreover, we have also found that the third-order induction terms are very important to evaluate reasonable charge transfer energies with the SAPT computations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA