RESUMEN
Esophageal cancer is one of the most common malignant tumors, and the 5-year overall survival rate is only 20%. Esophageal squamous cell carcinoma (ESCC) is the primary histological type of esophageal carcinoma in China. Protein phosphatase 1 regulatory subunit 18 (PPP1r18) is one of the actin-regulatory proteins and is able to bind to protein phosphatase 1 catalytic subunit alpha (PPP1CA). Yet, little is known about the role of PPP1r18 in ESCC. This study aimed to elucidate the biological functions of PPP1r18 in the ESCC progression. Clinical samples first confirmed that PPP1r18 expression was upregulated in ESCC, and PPP1r18 was correlated with tumor invasion depth, lymph node metastasis, distant metastasis and reduced overall survival. We then observed that PPP1r18 overexpression enhanced cell proliferation in vitro and in vivo. Mechanistically, PPP1r18 regulated tumor progression of ESCC through activating the calcineurin-mediated ERK pathway, rather than binding to PPP1CA. Collectively, our results suggest that PPP1r18 promotes ESCC progression by regulating the calcineurin-mediated ERK pathway. PPP1r18 might be a potential target for the diagnosis and treatment of ESCC.
Asunto(s)
Calcineurina , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Calcineurina/metabolismo , Calcineurina/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidad , Proliferación Celular/genética , Animales , Ratones , Masculino , Femenino , Sistema de Señalización de MAP Quinasas/genética , Persona de Mediana Edad , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Pronóstico , Línea Celular Tumoral , Ratones Desnudos , Movimiento Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Metástasis LinfáticaRESUMEN
PURPOSE: Frailty is common in surgical patients and is closely associated with postoperative outcomes. AIMS: This study employed bibliometric methods to summarize and analyze research related to frailty and surgery, comprehensively analyzing the research structure and providing visualized maps. METHODS: This study analyzed the volume of publications, countries, institutions, authors, journals, references, and keywords related to perioperative frailty in the Web of Science Core Collection from 1978 to 2024. Visual bibliometric analyses were conducted from multiple perspectives, including collaboration networks, citation analysis, and keyword clustering. RESULTS: From 1978 to 2024, 21,879 authors from 95 countries and regions published 4,119 papers on perioperative frailty in 973 journals worldwide. The United States has the most publications, while Italy has the highest degree of international collaboration. The University of California System has the highest number of publications. The University of Kansas Medical Center is the institution with the highest centrality. The top nine authors in terms of publication volume are all from the USA. Bowers Christian A. is the most prolific author. The Journal of Vascular Surgery is the journal with the most publications. Current research directions include preoperative risk assessment of frailty, the relationship between frailty and postoperative complications, elderly frailty, and the relationship between frailty and sarcopenia. Research hotspots include risk stratification, postoperative delirium, the elderly, and sarcopenia. CONCLUSION: This study has identified the research hotspots and trends in perioperative frailty. Our findings will enable researchers to understand this field's knowledge structure better and identify future research directions.
Asunto(s)
Bibliometría , Fragilidad , Humanos , Complicaciones Posoperatorias/epidemiología , Anciano , Procedimientos Quirúrgicos Operativos , Anciano Frágil , Medición de RiesgoRESUMEN
The recent advancements of ionic liquids (ILs) and deep eutectic solvents (DESs) in the synthesis of cobalt-based catalysts for water splitting is reviewed. ILs and DESs possess unique physical and chemical properties, serving as solvents, templates, and reagents. Combined with calcination techniques, their advantages can be fully leveraged, enhancing the stability and activity of resulted catalysts. In these solvents, not only are they suitable for simple one-step calcination, but also applicable to more complex multi-step calcination, suitable for more complex reaction conditions. The designability of ILs and DESs allows them to participate in the reaction as reactants, providing metal and heteroatoms, simplifying the preparation system of cobalt phosphide, sulfide, and nitride. This work offers insights into design principles for electrocatalysts and practical guidance for the development of efficient and high-performance materials for hydrogen production and energy storage systems.
RESUMEN
A meta-analysis was conducted to evaluate the effects of loose combined cutting seton surgery on wound healing and pain in patients with high anal fistula, aiming to provide evidence-based medical evidence for surgical method selection for these patients. A comprehensive computerized search of PubMed, Cochrane Library, EMBASE, Wanfang and China National Knowledge Infrastructure databases was conducted to collect all relevant studies published up to November 2023, evaluating the effects of loose combined cutting seton surgery in treating patients with high anal fistulas. Two researchers independently screened, extracted data, and assessed the quality of the identified studies. RevMan 5.4 software was employed for data analysis. Overall, 16 articles were included, comprising 1124 patients, with 567 undergoing loose combined cutting seton surgery and 557 undergoing simple cutting seton surgery. The analysis revealed patients undergoing loose combined cutting seton surgery had a higher rate of postoperative wound healing (97.44% vs. 81.69%, odds ratio [OR]: 7.49, 95% confidence interval [CI]: 4.29-13.10, p < 0.00001), shorter wound healing time (standardized mean differences [SMD]: -1.48, 95% CI: -1.89 to -1.08, p < 0.00001), lower postoperative wound pain scores (SMD: -2.51, 95% CI: -3.51 to -1.51, p < 0.00001), and a lower rate of postoperative complications (3.43% vs. 20.83%, OR: 0.13, 95% CI: 0.05-0.31, p < 0.00001). The current evidence suggests that compared to simple cutting seton surgery, loose combined cutting seton surgery in treating high anal fistulas can promote postoperative wound healing, shorten wound healing time, alleviate pain, and reduce the incidence of postoperative complications, making it a worthy clinical practice for widespread application.
Asunto(s)
Dolor Postoperatorio , Fístula Rectal , Cicatrización de Heridas , Humanos , Fístula Rectal/cirugía , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anciano , Resultado del TratamientoRESUMEN
The aerosol pyrolysis method from nitrate precursors was used to prepare the Mn-CeO2 catalyst containing Mn2O3, CeO2, and Mn-doped CeO2 nanoparticles for catalyzing carbonous soot oxidation. The prepared Mn-CeO2 catalysts have high specific surface areas, Ce3+ ratio, and oxygen vacancy defects; these are a benefit for soot oxidation. The T50 for soot oxidation on the 0.57Mn-CeO2 catalyst is as low as 355 °C, which is 329 °C lower than that for soot oxidation without a catalyst. The catalysts were characterized using XRD, SEM-EDS, HRTEM, XPS, Raman spectroscopy, H2-TPR-MS, O2-TPD-MS, soot-TPR-MS, and operando DRIFTS-MS. The functions of Mn2O3, CeO2, and Mn-doped CeO2 in the 0.57Mn-CeO2 catalyst are unveiled. Mn-doped CeO2 plays a key role and CeO2 participates in soot oxidation, while Mn2O3 is used to enhance higher ratios of Ce3+, via the reaction of Mn3+ + Ce4+ = Mn4+ + Ce3+. The mechanism of soot oxidation on Mn-CeO2 was proposed.
RESUMEN
In this study, based on the comparison of two counterparts [Mn- and Cr-modified CeO2 nanobelts (NBs)] with the opposite effects, some novel mechanistic insights into the ethyl acetate (EA) catalytic combustion over CeO2-based catalysts were proposed. The results demonstrated that EA catalytic combustion consisted of three primary processes: EA hydrolysis (C-O bond breakage), the oxidation of intermediate products, and the removal of surface acetates/alcoholates. Rapid EA hydrolysis typically occurs on surface acid/base sites or hydroxyl groups, and the removal of surface acetates/alcoholates resulting from EA hydrolysis is considered the rate-determining step. The deposited acetates/alcoholates like a shield covered the active sites (such as surface oxygen vacancies), and the enhanced mobility of the surface lattice oxygen as an oxidizing agent played a vital role in breaking through the shield and promoting the further hydrolysis-oxidation process. The Cr modification impeded the release of surface-activated lattice oxygen from the CeO2 NBs and induced the accumulation of acetates/alcoholates at a higher temperature due to the increased surface acidity/basicity. Conversely, the Mn-substituted CeO2 NBs with the higher lattice oxygen mobility effectively accelerated the in situ decomposition of acetates/alcoholates and facilitated the re-exposure of surface active sites. This study may contribute to a further mechanistic understanding into the catalytic oxidation of esters or other oxygenated volatile organic compounds over CeO2-based catalysts.
Asunto(s)
Acetatos , Oxígeno , Hidrólisis , Oxidación-Reducción , Acetatos/químicaRESUMEN
PURPOSE: Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS: The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS: The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION: This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.
Asunto(s)
MicroARNs , Preeclampsia , Humanos , Embarazo , Femenino , Placenta/metabolismo , Trofoblastos/metabolismo , Preeclampsia/patología , Hibridación Fluorescente in Situ , Sistema de Señalización de MAP Quinasas/genética , Línea Celular , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismoRESUMEN
BACKGROUND: The predictors of progressive infarction (PI) in patients with anterior circulation single subcortical infarction (ACSSI) and pontine single infarction (PSI) may be different. Our study aims to evaluate the association between various lipid markers and PI in patients with ACSSI or PSI. METHODS: A total of 629 patients (546 patients diagnosed as ACSSI and 83 patients diagnosed as PSI) were retrospectively enrolled between January 2020 and October 2022. Seven lipid markers including total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB) and lipoprotein(a) were collected within 24 h after admission. RESULTS: There were 119 patients with PI, accounting for 18.9% of the total. Univariate analysis showed that the levels of TC, TG, LDL-c, and ApoB in total patients with PI were higher than those in patients without PI (P < 0.05), while there were no significant differences in HDL-c, ApoA-I, and lipoprotein(a) (P > 0.05). In branch atheromatous disease patients, TC, TG, and ApoA-I were independently associated with PI after adjusting some confounding factors. Additionally, multivariate logistic regression analysis of the infarct location subgroup demonstrated TG and LDL-c were related to PI in patients with ACSSI (P < 0.05) but not in patients with PSI. Furthermore, receiver operating characteristic curves were established to compare the predictive abilities of TC, TG, LDL-c, and ApoB, and demonstrated TG was a better indicator to predict PI in ACSSI patients compared to other lipid markers. CONCLUSION: TG and LDL-c are associated with progressive infarction in patients with ACSSI, and TG was a superior predictor for PI compared to other lipid markers.
RESUMEN
Pt-based catalysts exhibit unique catalytic properties in many chemical reactions. In particular, metal-support interactions (MSI) greatly improve catalytic activity. However, the current MSI mechanism between platinum (Pt) and the support is not clear enough. In this paper, the interaction of 1 wt% Pt nanoparticles (NPs) on ß-MnO2 in carbon monoxide (CO) oxidation was studied. The Pt on ß-MnO2 inhibited CO oxidation below 210 °C but promoted it above 210 °C. A Pt/ß-MnO2 catalyst contains more Pt4+ and less Pt2+. The results of operando DRIFTS-MS show that surface-terminal-type oxygen (M=O) plays an important role in CO oxidation. When the temperature was below 210 °C, Mn=O consumption on Pt/ß-MnO2 was less than ß-MnO2 due to Pt4+ inhibition on CO oxidation. When the temperature was above 210 °C, Pt4+ was reduced to Pt2+, and Mn=O consumption due to CO oxidation was greater than ß-MnO2. The interaction of Pt and ß-MnO2 is proposed.
RESUMEN
Cu-doped manganese oxide (Cu-Mn2O4) prepared using aerosol decomposition was used as a CO oxidation catalyst. Cu was successfully doped into Mn2O4 due to their nitrate precursors having closed thermal decomposition properties, which ensured the atomic ratio of Cu/(Cu + Mn) in Cu-Mn2O4 close to that in their nitrate precursors. The 0.5Cu-Mn2O4 catalyst of 0.48 Cu/(Cu + Mn) atomic ratio had the best CO oxidation performance, with T50 and T90 as low as 48 and 69 °C, respectively. The 0.5Cu-Mn2O4 catalyst also had (1) a hollow sphere morphology, where the sphere wall was composed of a large number of nanospheres (about 10 nm), (2) the largest specific surface area and defects on the interfacing of the nanospheres, and (3) the highest Mn3+, Cu+, and Oads ratios, which facilitated oxygen vacancy formation, CO adsorption, and CO oxidation, respectively, yielding a synergetic effect on CO oxidation. DRIFTS-MS analysis results showed that terminal-type oxygen (M=O) and bridge-type oxygen (M-O-M) on 0.5Cu-Mn2O4 were reactive at a low temperature, resulting in-good low-temperature CO oxidation performance. Water could adsorb on 0.5Cu-Mn2O4 and inhibited M=O and M-O-M reaction with CO. Water could not inhibit O2 decomposition to M=O and M-O-M. The 0.5Cu-Mn2O4 catalyst had excellent water resistance at 150 °C, at which the influence of water (up to 5%) on CO oxidation could be completely eliminated.
RESUMEN
BACKGROUND AND AIMS: The detection rate for early gastric cancer (EGC) is unsatisfactory, and mastering the diagnostic skills of magnifying endoscopy with narrow-band imaging (ME-NBI) requires rich expertise and experience. We aimed to develop an EGC captioning model (EGCCap) to automatically describe the visual characteristics of ME-NBI images for endoscopists. METHODS: ME-NBI images (n = 1886) from 294 cases were enrolled from multiple centers, and corresponding 5658 text data were designed following the simple EGC diagnostic algorithm. An EGCCap was developed using the multiscale meshed-memory transformer. We conducted comprehensive evaluations for EGCCap including the quantitative and quality of performance, generalization, robustness, interpretability, and assistant value analyses. The commonly used metrics were BLEUs, CIDEr, METEOR, ROUGE, SPICE, accuracy, sensitivity, and specificity. Two-sided statistical tests were conducted, and statistical significance was determined when P < .05. RESULTS: EGCCap acquired satisfying captioning performance by outputting correctly and coherently clinically meaningful sentences in the internal test cohort (BLEU1 = 52.434, CIDEr = 36.734, METEOR = 27.823, ROUGE = 49.949, SPICE = 35.548) and maintained over 80% performance when applied to other centers or corrupted data. The diagnostic ability of endoscopists improved with the assistance of EGCCap, which was especially significant (P < .05) for junior endoscopists. Endoscopists gave EGCCap an average remarkable score of 7.182, showing acceptance of EGCCap. CONCLUSIONS: EGCCap exhibited promising captioning performance and was proven with satisfying generalization, robustness, and interpretability. Our study showed potential value in aiding and improving the diagnosis of EGC and facilitating the development of automated reporting in the future.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Gastroscopía/métodos , Imagen de Banda Estrecha/métodos , Detección Precoz del Cáncer/métodos , Endoscopía GastrointestinalRESUMEN
Osteoporosis is a prevalent systemic skeletal disorder entailing bone fragility and increased fracture risk, often emerging in post-menopausal life. Emerging evidence implicates the dysregulation of microRNAs (miRNAs or miRs) in the progression of osteoporosis. This study investigated the effect of miR-199a-3p on osteoporosis and its underlying mechanism. We first examplished an ovariectomized (OVX)-induced rat osteoporosis model, and then isolated mesenchymal stem cells (MSCs) from bone marrow of the model rats. The overexpression and knock down of miR-199a-3p were conducted in OVX rats and MSCs to verify the role of miR-199a-3p on MSC differentiation. Calcium nodules were measured using alizarin red S (ARS) staining. RT-qPCR and Western blot assay were performed to measure the expression of miR-199a-3p, Kdm3a and osteogenic differentiation-related markers in rat tissues and cells. The correlation between miR-199a-3p and Kdm3a was confirmed using dual-luciferase reporter assay. The enrichment of Kdm3a at the Erk2 and Klf2 promoter was assessed using chromatin immunoprecipitation (ChIP) assay. Isolated MSCs were positive for CD29, CD44, CD90, and CD45, suggesting successful isolation of MSCs. There was increased expression of miR-199a-3p and inhibited osteogenic differentiation in OVX rats. Kdm3a was negatively targeted by miR-199a-3p. Our results also demonstrated that Kdm3a elevated the expression of Erk2 and Erk2 by promoting Erk2 and Klf2 demethylation, which further contributed to osteogenic differentiation. Overall, our results revealed a regulatory network of miR-199a-3p in osteogenic differentiation, highlighting miR-199a-3p as a potential target for therapeutic interventions in osteoporosis.
Asunto(s)
Histona Demetilasas/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Osteogénesis/genética , Osteoporosis/genética , Animales , Antígenos CD/biosíntesis , Azepinas/farmacología , Azepinas/uso terapéutico , Huesos/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Genes Reporteros , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/biosíntesis , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/biosíntesis , Proteína Quinasa 1 Activada por Mitógenos/biosíntesis , Proteína Quinasa 1 Activada por Mitógenos/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Osteoporosis Posmenopáusica/genética , Ovariectomía , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Aberrant expression of ubiquitin-specific peptide 22 (USP22) has been detected in various cancers. This study aimed to investigate the role of USP22 and the underlying mechanism in human gastric cancer. METHODS: The expression pattern of USP22 in human gastric cancer was detected in a tissue microarray containing 88 pairs of gastric cancer tissue and adjacent normal tissue samples from patients with primary gastric cancer using immunohistochemical staining. The correlation of USP22 expression with clinical characteristics of patients, as well as their prognostic values in the overall survival of patients, were evaluated. USP22-overexpressing SGC7901 and USP22-silencing AGS cells were used to explore the role of USP22 in gastric cancer cell behavior in vitro and in vivo. Chromatin immunoprecipitation was performed to identify differentially expressed genes induced by USP22 overexpression. Western blot analysis was conducted to detect the activation of RAS/ERK and PI3K/AKT signaling in USP22-overexpressing SGC7901 cells and xenograft tumor tissues. Knockdown of RAS activator son of sevenless 1 (SOS1) was performed to investigate the role of SOS1 in USP22-regulated gastric cancer cell behavior and RAS signaling both in vitro and in vivo. RESULTS: USP22 protein expression was significantly increased in human gastric cancer tissues, compared with adjacent normal tissues, and was positively correlated with local tumor stage. Gain- and loss-of-function assays showed that USP22 promoted gastric cancer cell growth and cell cycle transition while suppressing apoptosis in vitro. Consistent results were observed in a xenograft mouse model. Chromatin immunoprecipitation revealed that the overexpression of USP22 induced the upregulation of RAS activator son of sevenless 1 (SOS1) in SGC7901 cells. Western blot analysis showed that USP22 overexpression also induced activation of the RAS/ERK and PI3K/AKT pathways in SGC7901 cells and xenograft tumor tissues. Furthermore, SOS1 silencing could reverse the effects of USP22 on gastric cancer cell behavior and RAS signaling both in vitro and in vivo. CONCLUSIONS: Our results suggest that USP22 acts as an oncogene in gastric cancer in a SOS1-dependent manner, identifying the USP22/SOS1/RAS axis as a potential therapeutic target in gastric cancer.
RESUMEN
BACKGROUND: In unresectable hepatocellular carcinoma (HCC), methods to predict patients at increased risk of progression are required. PURPOSE: To investigate the feasibility of radiomics model in predicting early progression of unresectable HCC after transcatheter arterial chemoembolization (TACE) therapy using preoperative multiparametric magnetic resonance imaging (MP-MRI). STUDY TYPE: Retrospective. POPULATION: A total of 84 patients with BCLC B stage HCC from one medical center. According to the modified response evaluation criteria in solid tumors, patients who progressed at 6 months after TACE therapy were assigned as the progressive disease (PD) group (n = 32). Patients whose MRI was performed on four devices were divided into a training cohort (n = 67). Patients whose MRI was performed on other than the previous four devices were used as the testing set (n = 17). FIELD STRENGTH/SEQUENCE: 3.0T, 1.5T axial T2 -weighted imaging (T2 WI), diffusion-weighted imaging (DWI, b = 0, 500 s/mm2 ), and apparent diffusion coefficient (ADC) ASSESSMENT: PD was confirmed via imaging studies with MRI. Risk factors, including age, alpha fetoprotein (AFP), size, and radiomic-related features of PD were assessed. In addition, the discrimination ability of each radiomics signature was tested on an independent testing set. STATISTICAL TESTS: The area under the receiver-operator characteristic (ROC) curve (AUC) was used to evaluate the predictive accuracy of the radiomic signature in both the training and testing sets. The results indicated that the MP-MRI model achieved the greatest benefit. RESULTS: In the testing set, the model based on DWI features presented an AUC of (b = 0, 0.786; b = 500, 0.729), followed by T2 WI features (0.729) and ADC (0.714). The AUC of the MP-MRI signature was increased to 0.800 compared to any single MRI signature. The multivariate logistic analysis identified the radiomics signature as independent parameters of PD, while clinical information such as age, AFP, size, etc., had no significance in the PD group. DATA CONCLUSION: Preoperative MP-MRI has the potential to predict the outcome of TACE therapy for unresectable HCC. In addition, these image features may be complementary to the current staging systems of HCC patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 3. J. Magn. Reson. Imaging 2020;52:1083-1090.
Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética , Estudios RetrospectivosRESUMEN
Chemiluminescence (CL) has a higher signal-to-noise ratio than fluorescence, but the use of CL to track an enzyme-instructed self-assembly (EISA) process has not been reported. In this work, by coincubation of the hydrogelator precursor Fmoc-Phe-Phe-Tyr(H2PO3)-OH (1P) and the CL agent AMPPD (2) with alkaline phosphatase (ALP), we employed CL to directly characterize and image the simultaneous EISA process of 1P. Hydrogelation processes of 1P with and without 2 and the CL properties of 2 with and without 1P under ALP catalysis were systematically studied. The results indicated that 2 is an ideal CL indicator for ALP-triggered hydrogelation of 1P. Using an IVIS optical imaging system, we obtained time-course CL images of 2 to track the simultaneous hydrogelation process of 1P in the same solution. We envision that our CL method could be employed to track more biological EISA events in the near future.
Asunto(s)
Fosfatasa Alcalina/metabolismo , Luminiscencia , Fosfatasa Alcalina/química , Biocatálisis , Geles/química , Geles/metabolismo , Cinética , Conformación Molecular , Imagen Óptica , Tamaño de la PartículaRESUMEN
γ-Glutamyltranspeptidase (GGT) is an important tumor biomarker but using a bioluminescence (BL) probe to real time monitor its activity has not been reported. Herein, we rationally designed two GGT-cleavable BL probes Glu-AmLH2 (1) and Glu-p-aminobenzyloxycarbonyl-AmLH2 (2), and successfully applied them for sensing GGT activity with high sensitivity and excellent selectivity both in vitro and in vivo. The results indicated that, although 2 had lower background BL signal than 1, GGT had higher catalytic efficiency for 1 than 2, and 1 was superior to 2 for sensing GGT activity in living cells and tumors. We envision that our probe 1 could be widely applied for the diagnosis of important GGT-related diseases in animal models in the near future.
Asunto(s)
Benzotiazoles/química , Biomarcadores de Tumor/análisis , Sustancias Luminiscentes/química , gamma-Glutamiltransferasa/análisis , Animales , Benzotiazoles/síntesis química , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Límite de Detección , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes/métodos , Ratones DesnudosRESUMEN
Studying blindness with various onset ages may elucidate the ways that unimodal sensory deprivation at different periods of development shape the human brain. In order to determine the effect of the onset age on brain anatomical networks, we extended a previous study of 17 early blind (EB) subjects with an additional 97 subjects with various onset ages. We constructed binary anatomical networks of these subjects and sighted controls (SC) using diffusion tensor tractography and calculated the topological properties of the network. Based on onset age, the subjects were divided into congenitally blind (CB), EB, adolescent-blind (AB), and late-blind (LB) subgroups. The LB subjects demonstrated a greater connectivity density and a higher global efficiency, similar to the SC. The CB and EB subgroups showed large group differences from the other groups in their topological networks, specifically, a reduced connectivity density and a decreased global efficiency compared with the SC, especially in the frontal and occipital cortices. Additionally, significant correlations were found between age of onset and the topological properties of the anatomical network in the blind. Our results suggest that visual experience during an early period of development is critical for establishing an intact efficient anatomical network in the human brain.
Asunto(s)
Edad de Inicio , Ceguera/patología , Mapeo Encefálico/métodos , Encéfalo/patología , Vías Nerviosas/patología , Adolescente , Adulto , Ceguera/epidemiología , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-ß1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway.
Asunto(s)
Enfermedades Renales , Neoplasias Hepáticas , Saponinas , Triterpenos , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibrosis , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/genética , Enfermedades Renales/metabolismoRESUMEN
With the development of assisted reproductive technology, the number of twin pregnancies is increasing year by year. Given the increased risk of pregnancy complications associated with twin pregnancies, and the fact that these babies are rare and difficult to obtain through assisted reproductive technology, clinicians urgently require finding effective and safe drugs to improve pregnancy outcomes. Low-dose aspirin can not only promote placental blood supply, but also effectively anti-inflammatory. Whether Low-dose aspirin can effectively reduce the risk of pregnancy complications in this special group needs to be clarified. We therefore retrospectively analyzed 665 twin pregnancies from assisted reproduction technology, grouped according to aspirin use, and followed pregnancy outcomes to assess bleeding risk. Low-dose aspirin was found to be effective in preventing preeclampsia without a significant risk of bleeding. However, aspirin does not prevent specific complication in twin pregnancies and seems to have a better preventive effect only when the mother is under 30, which should alarm clinicians should not blindly using aspirin in this particular group.
Asunto(s)
Complicaciones del Embarazo , Resultado del Embarazo , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Aspirina/uso terapéutico , Placenta , Complicaciones del Embarazo/prevención & control , Complicaciones del Embarazo/etiología , Técnicas Reproductivas Asistidas/efectos adversos , Prevención PrimariaRESUMEN
AIMS: Chordoma is a rare and aggressive bone tumor with high-recurrence and lack of effective treatment methods. Tumor associated macrophages (TAMs) are abundant in tumor microenvironment (TME) and polarize toward M2 in chordoma. It has been observed that the high proportion of M2 cells is associated with chordoma rapid progression. However, the mechanism of TAMs polarization and promotion to tumor progression in chordoma is still unclear. The is an urgent need for further research. MATERIALS AND METHODS: Flow cytometry and immunohistochemical staining was used to detect the degree of macrophages infiltration in chordoma. A co-culture model of chordoma cells and macrophages was established in vitro to investigate the effects of their interaction on cell function, cytokine secretion, and RNA transcriptome expression. KEY FINDINGS: In this study, we found M2 macrophage was predominantly abundant immune cell population in chordoma, and its proportion was associated with the degree of bone destruction. We demonstrated that interleukin 6 (IL-6) derived from chordoma cells could induce TAMs polarization by activating STAT3 phosphorylation, and TAMs could enhance chordoma cells migration and invasion through TNFα/NF-κB pathway. The interaction of chordoma cells and TAMs could promote the bone destruction-related factor Cathepsin B (CTSB) and inhibitory immune checkpoints expression. We also confirmed blocking IL-6/STAT3 pathway could significantly attenuate the M2 polarization of TAMs and decrease the secretion of TNFα. SIGNIFICANCE: This study illustrates the dynamics between chordoma cells and TAMs in promoting chordoma invasion and suggests that IL-6/STAT3 pathway is a potential therapeutic target to reduce TAM-induced chordoma invasion.