Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(9): 1629-1645, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38785370

RESUMEN

We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1ß (IL-1ß). Astrocytes treated with IL-1ß showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.


Asunto(s)
Aminopiridinas , Acuaporina 4 , Astrocitos , Benzamidas , Edema Encefálico , Infarto de la Arteria Cerebral Media , Inhibidores de Fosfodiesterasa 4 , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Daño por Reperfusión/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Masculino , Edema Encefálico/metabolismo , Edema Encefálico/etiología , Edema Encefálico/patología , Aminopiridinas/farmacología , Benzamidas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ciclopropanos/farmacología , Proteína Forkhead Box O3/metabolismo , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo
2.
Small ; 20(14): e2306671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992245

RESUMEN

Functional metamaterials can be constructed by assembling nanoparticles (NPs) into well-ordered structures, which show fascinating properties at different length scales. Using polymer-grafted NPs (PGNPs) as a building block, flexible composite metamaterials can be obtained, of which the structure is significantly affected by the property of polymer ligands. Here, it is demonstrated that the crystallization of polymer ligands determines the assembly behavior of NPs and reveal a pathway-dependent self-assembly of PGNPs into different metastructures in solution. By changing the crystallization degree of polymer ligands, the arrangement structure of NPs can be tailored. When the polymer ligands highly crystallize, the PGNPs assemble into diamond-shaped platelets, in which the NPs arrange disorderedly. When the polymer ligands lowly crystallize, the PGNPs assemble into highly ordered 3D superlattices, in which the NPs pack into a body-centered-cubic structure. The structure transformation of PGNP assemblies can be achieved by thermal annealing to regulate the crystallization of polymer ligands. Interestingly, the diamond-shaped platelets remain "living" for seeded epitaxial growth of newly added crystalline species. This work demonstrates the effects of ligand crystallization on the crystallization of NP, providing new insights into the structure regulation of metamaterials.

3.
Small ; 19(23): e2208288, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36876441

RESUMEN

In this work, it is reported that large-area (centimeter-scale) arrays of non-close-packed polystyrene-tethered gold nanorod (AuNR@PS) can be prepared through a liquid-liquid interfacial assembly method. Most importantly, the orientation of AuNRs in the arrays can be controlled by changing the intensity and direction of electric field applied in the solvent annealing process. The interparticle distance of AuNR can be tuned by varying the length of polymer ligands. Moreover, the AuNR@PS with short PS ligand are favorited to form orientated arrays with the assistance of electric field, while long PS ligands make the orientation of AuNRs difficult. The orientated AuNR@PS arrays are employed as the nano-floating gate of field-effect transistor memory device. Tunable charge trapping and retention characteristics in the device can be realized by electrical pulse with visible light illumination. The memory device with orientated AuNR@PS array required less illumination time (1 s) at the same onset voltage in programming operation, compared to the control device with disordered AuNR@PS array (illumination time: 3 s). Moreover, the orientated AuNR@PS array-based memory device can maintain the stored data for more than 9000 s, and exhibits stable endurance characteristic without significant degradation in 50 programming/reading/erasing/reading cycles.

4.
Acta Pharmacol Sin ; 44(3): 499-512, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36229600

RESUMEN

Cannabidiol (CBD) reportedly exerts protective effects against many psychiatric disorders and neurodegenerative diseases, but the mechanisms are poorly understood. In this study, we explored the molecular mechanism of CBD against cerebral ischemia. HT-22 cells or primary cortical neurons were subjected to oxygen-glucose deprivation insult followed by reoxygenation (OGD/R). In both HT-22 cells and primary cortical neurons, CBD pretreatment (0.1, 0.3, 1 µM) dose-dependently attenuated OGD/R-induced cell death and mitochondrial dysfunction, ameliorated OGD/R-induced endoplasmic reticulum (ER) stress, and increased the mitofusin-2 (MFN2) protein level in HT-22 cells and primary cortical neurons. Knockdown of MFN2 abolished the protective effects of CBD. CBD pretreatment also suppressed OGD/R-induced binding of Parkin to MFN2 and subsequent ubiquitination of MFN2. Overexpression of Parkin blocked the effects of CBD in reducing MFN2 ubiquitination and reduced cell viability, whereas overexpressing MFN2 abolished Parkin's detrimental effects. In vivo experiments were conducted on male rats subjected to middle cerebral artery occlusion (MCAO) insult, and administration of CBD (2.5, 5 mg · kg-1, i.p.) dose-dependently reduced the infarct volume and ER stress in the brains. Moreover, the level of MFN2 within the ischemic penumbra of rats was increased by CBD treatment, while the binding of Parkin to MFN2 and the ubiquitination of MFN2 was decreased. Finally, short hairpin RNA against MFN2 reversed CBD's protective effects. Together, these results demonstrate that CBD protects brain neurons against cerebral ischemia by reducing MFN2 degradation via disrupting Parkin's binding to MFN2, indicating that MFN2 is a potential target for the treatment of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Cannabidiol , GTP Fosfohidrolasas , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Masculino , Ratas , Apoptosis , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Cannabidiol/farmacología , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , GTP Fosfohidrolasas/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
5.
J Stroke Cerebrovasc Dis ; 32(2): 106949, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36535134

RESUMEN

OBJECTIVE: Ischaemic stroke has a high death rate and frequently results in long-term and severe brain damage in survivors. miRNA-124-3p (miR-124-3p) treatment has been suggested to reduce ischaemia and play a vital function in avoiding neuron death. An investigation of the role of miR-124-3p, in the ischaemia damage repair or protection in the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/R) model, was the purpose of this research. METHODS: The expression of miRNA and mRNA in the MCAO model was predicted using bioinformatics analysis. The OGD/R neuronal model was developed. We examined the influence of a number of compounds on the OGD/R model in vitro using gain- and loss-of-function approaches. RESULTS: For starters, miR-124-3p and Nrep level in the MCAO model were found to be lower in the model predicted by bioinformatics than in the sham-operated group. And then in the OGD/R model, miR-124-3p treatment reduced OGD/R neuronal damage, increased neuronal survival, and reduced apoptosis in cell lines. Moreover, we further looked at the impact of miR-124-3p on downstream Rnf38 and Nrep using the OGD/R model. Western blot analysis and dual-luciferase reporter assays indicated that miR-124-3p binds and inhibits Rnf38. Finally, although Nrep expression was reduced in the OGD/R model neuronal model, it was shown that miR-124-3p administration reduced apoptosis and increased neuronal activity, particularly with regard to axon regeneration-related proteins. CONCLUSION: Our studies have shown that miR-124-3p may reduce neuronal injury by preventing Rnf38-mediated effects on the Nrep axis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Accidente Cerebrovascular , Apoptosis , Axones/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Glucosa , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , MicroARNs/metabolismo , Regeneración Nerviosa , Oxígeno , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Ubiquitina-Proteína Ligasas , Animales , Ratones
6.
Toxicol Appl Pharmacol ; 436: 115859, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990728

RESUMEN

We have previously shown that inhibition of cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4) protects against cellular toxicity in neuronal cells. Since α-synuclein (α-syn) toxicity contributes to the neurodegeneration of Parkinson's disease (PD). The aim of this study was to explore the effects and mechanisms of PDE4 on α-syn-induced neuronal toxicity. Using mutant human A53T α-syn overexpressed SH-SY5Y cells, we found that PDE4B knockdown reduced cellular apoptosis. Roflupram (ROF, 20 µM), a selective PDE4 inhibitor, produced similar protective effects and restored the morphological alterations of mitochondria. Mechanistic studies identified that α-syn enhanced the phosphorylation of Parkin at Ser131, followed by the decreased mitochondrial translocation of Parkin. Whereas both PDE4B knockdown and PDE4 inhibition by ROF blocked the effects of α-syn on Parkin phosphorylation and mitochondrial translocation. Moreover, PDE4 inhibition reversed the increase in the phosphorylation of p38 mitogen-activated protein kinase (MAPK) induced by α-syn. ROF treatment also reduced the binding of p38 MAPK to Parkin. Consistently, overexpression of PDE4B blocked the roles of ROF on p38 MAPK phosphorylation, Parkin phosphorylation, and the subsequent mitochondrial translocation of parkin. Furthermore, PDE4B overexpression attenuated the protective role of ROF, as evidenced by reduced mitochondria membrane potential and increased cellular apoptosis. Interestingly, ROF failed to suppress α-syn-induced cytotoxicity in the presence of a protein kinase A (PKA) inhibitor H-89. Our findings indicate that PDE4 facilitates α-syn-induced cytotoxicity via the PKA/p38 MAPK/Parkin pathway in SH-SY5Y cells overexpressing A53T mutant α-synuclein. PDE4 inhibition by ROF is a promising strategy for the prevention and treatment of α-syn-induced neurodegeneration.


Asunto(s)
Derivados del Benceno/farmacología , Furanos/farmacología , Mitocondrias/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Humanos , Mitocondrias/genética , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Inhibidores de Fosfodiesterasa 4/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
7.
Brain Behav Immun ; 104: 155-170, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35688339

RESUMEN

Currently, there is increasing attention on the regulatory effects of cannabidiol (CBD) on the inflammatory response and the immune system. However, the mechanisms have not yet been completely revealed. Mitofusin 2 (Mfn2) is a mitochondrial fusion protein involved in the inflammatory response. Here, we investigated whether Mfn2 confers the anti-inflammatory effects of CBD. We found that treatment with CBD decreased the levels of tumor necrosis factor α, interleukin 6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and ionized calcium-binding adaptor molecule-1 (Iba1) in lipopolysaccharide (LPS)-challenged microglia. CBD also significantly suppressed the increase in reactive oxygen species (ROS) and the decline of mitochondrial membrane potential in BV-2 cells subjected to LPS. Interestingly, CBD treatment increased the expression of Mfn2, while knockdown of Mfn2 blocked the effect of CBD. By contrast, overexpression of Mfn2 reversed the increase in the levels of iNOS, COX-2, and Iba1 induced by Mfn2 small interfering RNA. In mice challenged with LPS, we found that CBD ameliorated the anxiety responses and cognitive deficits, increased the level of Mfn2, and decreased the expression of Iba1. Since neuro-inflammation and microglial activation are the common events that are observed in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, we treated EAE mice with CBD. Mice that received CBD showed amelioration of clinical signs, reduced inflammatory response, and increased myelin basic protein level. Most importantly, the adeno-associated virus delivery of short hairpin RNA against Mfn2 reversed the protective effects of CBD. Altogether, these results indicate that Mfn2 is an essential immunomodulator conferring the anti-inflammatory effects of CBD. Our results also shed new light on the mechanisms underlying the protective effects of CBD against inflammatory diseases including multiple sclerosis.

8.
Macromol Rapid Commun ; 43(18): e2200143, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35396780

RESUMEN

Shape-transforming block copolymer (BCP) microparticles have attracted extensive attention due to their promising applications in nanotechnology, biomedicines, interfacial science, and other fields. As their performance is highly associated to their shape and structure, it is very important to realize the precise control of particle shape. In this report, a method is proposed to regulate the shape and structure of polystyrene-b-polydimethoxysiloxane (PS-b-PDMS) microparticles by using positively charged core-crosslinked nanoparticles (CNPs) as a cosurfactant, combining with cationic surfactant cetyltrimethylammonium bromide (CTAB). The electrostatic repulsive interactions between CNPs and CTAB dominate the shape of PS-b-PDMS particles. Upon introducing NaCl, the electrostatic repulsion is reduced, resulting in the reshape of PS-b-PDMS particles from striped Janus ellipsoids to onion-like microspheres at a critical concentration of NaCl (cNaCl ). Interestingly, it is found that the critical cNaCl first increases then reaches a plateau, with the increase in the crosslinking degree of the CNPs. The work provides a simple strategy to tailor the morphology of BCPs by manipulating the electrostatic interaction.


Asunto(s)
Nanopartículas , Poliestirenos , Cetrimonio , Polímeros/química , Poliestirenos/química , Cloruro de Sodio , Tensoactivos
9.
Small ; 17(18): e2007570, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33734588

RESUMEN

Halogen-bond driven assembly, a world parallel to hydrogen-bond, has emerged as an attractive tool for constructing (macro)molecular arrangement. However, knowledge about halogen-bond mediated confined-assembly in emulsion droplets is limited so far. An I…. N bond mediated confined-assembly pathway to enable order-order phase transitions is reported here. Compared to hydrogen bonds, the distinct features of halogen bonds (e.g., higher directionality, hydrophobicity, favored in polar solvents), offers opportunities to achieve novel nanostructures and materials. Polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) AB diblock copolymer is chosen as halogen acceptor, while an iodotetrafluorophenoxy substituted C-type homopolymer, (poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy)propyl acrylate), PTFIPA) is designed as halogen donor, synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Formation of halogen bonding donor-acceptor pairs between the PTFIPA homopolymer and the P4VP segments presented in PS-b-P4VP, increase the volume of P4VP domains, in turn inducing an order-to-order morphology transition sequence: changing from spherical → cylindrical → lamellar → inverse cylindrical, by tuning the PTFIPA content and choice of surfactant. Subsequent selective swelling/deswelling of the P4VP domains give rise to further internal morphology transitions, creating tailored mesoporous microparticles, disassembled nanodiscs, and superaggregates. It is believed that these results will stimulate further examinations of halogen bonding interactions in emulsion droplets and many areas of application.

10.
Clin Sci (Lond) ; 135(15): 1873-1895, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34318888

RESUMEN

Although accelerated cellular senescence is closely related to the progression of chronic kidney disease (CKD) and renal fibrosis, the underlying mechanisms remain largely unknown. Here, we reported that tubular aberrant expression of Brahma-related gene 1 (BRG1), an enzymatic subunit of the SWItch/Sucrose Non-Fermentable complex, is critically involved in tubular senescence and renal fibrosis. BRG1 was significantly up-regulated in the kidneys, predominantly in tubular epithelial cells, of both CKD patients and unilateral ureteral obstruction (UUO) mice. In vivo, shRNA-mediated knockdown of BRG1 significantly ameliorated renal fibrosis, improved tubular senescence, and inhibited UUO-induced activation of Wnt/ß-catenin pathway. In mouse renal tubular epithelial cells (mTECs) and primary renal tubular cells, inhibition of BRG1 diminished transforming growth factor-ß1 (TGF-ß1)-induced cellular senescence and fibrotic responses. Correspondingly, ectopic expression of BRG1 in mTECs or normal kidneys increased p16INK4a, p19ARF, and p21 expression and senescence-associated ß-galactosidase (SA-ß-gal) activity, indicating accelerated tubular senescence. Additionally, BRG1-mediated pro-fibrotic responses were largely abolished by small interfering RNA (siRNA)-mediated p16INK4a silencing in vitro or continuous senolytic treatment with ABT-263 in vivo. Moreover, BRG1 activated the Wnt/ß-catenin pathway, which further inhibited autophagy. Pharmacologic inhibition of the Wnt/ß-catenin pathway (ICG-001) or rapamycin (RAPA)-mediated activation of autophagy effectively blocked BRG1-induced tubular senescence and fibrotic responses, while bafilomycin A1 (Baf A1)-mediated inhibition of autophagy abolished the effects of ICG-001. Further, BRG1 altered the secretome of senescent tubular cells, which promoted proliferation and activation of fibroblasts. Taken together, our results indicate that BRG1 induces tubular senescence by inhibiting autophagy via the Wnt/ß-catenin pathway, which ultimately contributes to the development of renal fibrosis.


Asunto(s)
Autofagia , Senescencia Celular , ADN Helicasas/metabolismo , Células Epiteliales/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , ADN Helicasas/genética , Modelos Animales de Enfermedad , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Células HEK293 , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/patología , Túbulos Renales/patología , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Ratas , Factores de Transcripción/genética , Obstrucción Ureteral/complicaciones
11.
Brain Behav Immun ; 92: 67-77, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221489

RESUMEN

Inhibition of phosphodiesterase-4 (PDE4) produces robust anti-inflammatory and antidepressant-like effects in multiple animal models. However, the detailed mechanisms have not been well studied. Receptor for advanced glycation endproducts (RAGE) and inflammasome activation are implicated in the etiology of depression. Here, we aimed to investigate the involvement of RAGE and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the antidepressant-like effects of PDE4 inhibition in mice. We found that inhibition of PDE4 by roflupram (ROF, 0.5, and 1.0 mg/kg, i.g.) exerted antidepressant-like effects in mice subjected to chronic unpredictable mild stress (CUMS). Simultaneously, ROF inhibited CUMS-induced microglial activation and restored the morphology of microglial cells in the hippocampus, as evidenced by reduced total process length, area, volume, number of branching points, number of terminal points and total sholl intersections of microglia. ROF also decreased the expression of ionized calcium-binding adapter molecule-1 and the level of interleukin-1ß. Western blot analysis showed that PDE4 inhibition suppressed the high-mobility group box 1 protein (HMGB1)/RAGE signaling pathway, as the levels of HMGB1, RAGE, toll-like receptor 4, phosphorylated p38 mitogen-activated protein kinase, and nuclear factor κ-B were decreased in both hippocampus and cortex in mice after treatment with ROF. Moreover, ROF also attenuated the protein levels of NLRP3, the apoptosis-associated speck-like protein containing (ASC), and cysteine-requiring aspartate protease-1 (Caspase-1), which are key proteins in the NLRP3-mediated inflammasome signaling pathway. In summary, these results demonstrate that the down-regulation of HMGB1/RAGE signaling pathway and inflammasome suppression possibly contribute to the antidepressant-like effects of PDE4 inhibitors. And, ROF has potential as a candidate drug in the treatment of depression.


Asunto(s)
Proteína HMGB1 , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inhibidores de Fosfodiesterasa 4 , Transducción de Señal , Estrés Psicológico , Animales , Derivados del Benceno , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Depresión , Furanos , Interleucina-1beta , Ratones , Receptor para Productos Finales de Glicación Avanzada
12.
Langmuir ; 37(1): 454-460, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33373522

RESUMEN

Block copolymer microparticles with controllable morphology have drawn widespread attention owing to their promising applications in photonic materials, energy storage, and other areas. Hence, it is highly desired to achieve a controllable transformation of microparticle morphology. In this work, we report a simple method to shape the morphology of polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) microparticles, by employing core-cross-linked polymeric nanoparticles (CNPs) as cosurfactants which are synthesized through cross-linking P4VP segment of PS-block-poly(4-vinylpyridine) (PS-b-P4VP). The addition of pH-responsive CNPs makes the shape of pH-inert PS-b-PDMS microparticles sensitive to pH value. The PS-b-PDMS microparticles transformed from elongated Janus pupa-like particles to onion-like particles by decreasing the pH value of the aqueous phase. The deformation mechanism is investigated by changing pH value, the weight fraction of CNPs, and surfactant property. This study provides a facile strategy to deform microparticles of pH-inert BCPs by tuning pH value, which is anticipated to be applicable to other non-pH-responsive BCP microparticles.

13.
Langmuir ; 37(44): 13099-13106, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34705469

RESUMEN

Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinetics, making it difficult to successively produce MCMs. Herein, we report a facile yet effective method for preparing MCMs by adjusting the hydrodynamics in microfluidic channels. It was found that well-defined MCMs were formed through hydrodynamics-dependent secondary assembly in microfluidic chips. By adjusting the flow diffusion process by varying the flow rate ratio and total flow rate, both the internal structure and size of MCMs could be effectively changed. A product diagram of micellar morphologies associated to the initial polymer concentration and flow rate ratio of water/BCPs solution was constructed. More interestingly, quantum dots (QDs) could be selectively loaded into different domains of the MCMs. Consequently, the Förster resonance energy transfer among QDs could be effectively suppressed. Thus, the emission spectrum of MCMs/QDs hybrid particles could be easily tuned by changing the ratio of QDs, showing great potential application in photonics and sensors.


Asunto(s)
Micelas , Puntos Cuánticos , Hidrodinámica , Microfluídica , Polímeros
14.
Acta Pharmacol Sin ; 42(12): 1991-2003, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34531546

RESUMEN

We have previously shown that roflupram (ROF) protects against MPP+-induced neuronal damage in models of Parkinson's disease (PD). Since impaired degradation of α-synuclein (α-syn) is one of the key factors that lead to PD, here we investigated whether and how ROF affects the degradation of α-syn in rotenone (ROT)-induced PD models in vivo and in vitro. We showed that pretreatment with ROF (10 µM) significantly attenuated cell apoptosis and reduced the level of α-syn in ROT-treated SH-SY5Y cells. Furthermore, ROF significantly enhanced the lysosomal function, as evidenced by the increased levels of mature cathepsin D (CTSD) and lysosomal-associated membrane protein 1 (LAMP1) through increasing NAD+/NADH and the expression of sirtuin 1 (SIRT1). Pretreatment with an SIRT1 inhibitor selisistat (SELI, 10 µM) attenuated the neuroprotection of ROF, ROF-reduced expression of α-syn, and ROF-increased expression levels of LAMP1 and mature CTSD. Moreover, inhibition of CTSD by pepstatin A (20 µM) attenuated ROF-reduced expression of α-syn. In vivo study was conducted in mice exposed to ROT (10 mg·kg-1·d-1, i.g.) for 6 weeks; then, ROT-treated mice received ROF (0.5, 1, or 2 mg·kg-1·d-1; i.g.) for four weeks. ROF significantly ameliorated motor deficits, which was accompanied by increased expression levels of tyrosine hydroxylase, SIRT1, mature CTSD, and LAMP1, and a reduced level of α-syn in the substantia nigra pars compacta. Taken together, these results demonstrate that ROF exerts a neuroprotective action and reduces the α-syn level in PD models. The mechanisms underlying ROF neuroprotective effects appear to be associated with NAD+/SIRT1-dependent activation of lysosomal function.


Asunto(s)
Derivados del Benceno/uso terapéutico , Furanos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Rotenona/toxicidad , alfa-Sinucleína/metabolismo , Animales , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Derivados del Benceno/farmacología , Catepsina D/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Furanos/farmacología , Humanos , Lisosomas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Movimiento/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Sirtuina 1/metabolismo
15.
Small ; 16(29): e2001315, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567198

RESUMEN

Photonic crystals (PCs) are ideal candidates for reflective color pigments with high color purity and brightness due to tunable optical stop band. Herein, the generation of PC microspheres through 3D confined supramolecular assembly of block copolymers (polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP) and small molecules (3-n-pentadecylphenol, PDP) in emulsion droplets is demonstrated. The intrinsic structural colors of the PC microspheres are effectively regulated by tuning hydrogen-bonding interaction between P2VP blocks and PDP, where reflected color can be readily tuned across the whole visible spectrum range. Also, the effects of both PDP and homopolymer (hPS) on periodic structure and optical properties of the microspheres are investigated. Moreover, the spectral results of finite element method (FEM) simulation agree well with the variation of structural colors by tuning the periodicity in PC microspheres. The supramolecular microspheres with tunable intrinsic structural color can be potentially useful in the various practical applications including display, anti-counterfeit printing and painting.

16.
Cell Mol Neurobiol ; 40(3): 421-435, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31659561

RESUMEN

Tumor necrosis factor-α (TNF-α) is a critical pro-inflammatory cytokine regulating neuroinflammation. At high concentrations, it is toxic to neurons, and such damage is positively correlated with acute and chronic neurological diseases. Our previous studies showed that inhibition of phosphodiesterase 4 (PDE4) attenuated the production of TNF-α induced by lipopolysaccharides in microglial cells. However, whether PDE4 inhibition can block the neurotoxic effects of TNF-α in neuronal cells is unknown. In this study, we investigated the protective effects of FCPR16, a novel PDE4 inhibitor, against TNF-α-induced cellular apoptosis in HT-22 hippocampal neuronal cells. We demonstrated that FCPR16 dose-dependently increased the viability of HT-22 cells exposed to TNF-α insult. Propidium iodide/calcein staining and flow cytometry analysis showed that FCPR16 decreased cell apoptosis triggered by TNF-α. Western blot analysis showed that FCPR16 decreased the level of cleaved caspase 3 and caspase 8, but had no effect on caspase 9. Mechanistically, FCPR16 blocked the TNF-α-induced phosphorylation of c-Jun N-terminal kinase (JNK) in HT-22 cells, and inhibition of JNK showed a similar protective effect as FCPR16. Furthermore, FCPR16 decreased the translocation of nuclear factor-κB (NF-κB) p65 from the cytosol into the nucleus. In addition, FCPR16 decreased the expression of inducible nitric oxide synthase and the production of reactive oxygen species in HT-22 cells exposed to TNF-α. Moreover, knockdown of PDE4B by specific small interfering RNA reduced the apoptosis of HT-22 cells treated with TNF-α. Taken together, our findings suggest that FCPR16 promotes the survival of neuronal cells exposed to TNF-α by suppressing the activation of JNK and NF-κB.


Asunto(s)
Benzamidas/farmacología , Muerte Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Interacciones Farmacológicas , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Neuronas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Langmuir ; 36(44): 13364-13370, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33119985

RESUMEN

In this work, we report an approach to prepare segmented polymer nanofibers (SPNFs) composed of rodlike subunits by kinetically controlled self-assembly of polystyrene-b-poly(4-vinylpyridine)-based supramolecules in microfluidic chips. The length and morphology of the SPNFs could be effectively adjusted by changing the total flow rate (Vtotal) and the molar ratio (x) of 4-vinylpyridine (4VP) unit to a hydrogen-bonding molecule, 3-n-pentadecyphenol. Moreover, the subunits of SPNFs could transform from short rods to spheres when the interfacial tension between PS core and solvent increased. On the contrary, the SPNFs elongated along the major axis when the interfacial tension decreased. This work not only offers mechanism insights into the hierarchical self-assembly of block copolymer-based supramolecules but also provides a versatile and effective method for kinetically controlling the hierarchical structures of assemblies.

18.
Langmuir ; 36(19): 5377-5384, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32345020

RESUMEN

Self-assembly of block copolymers (BCPs) in microfluidic chips is a versatile yet effective route to produce micellar aggregates with various controllable sizes and morphologies. In this study, the morphological transformation of the BCP of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) assemblies from irregular aggregates to multicompartment micelles and ultimately to ordered spherical micelles is demonstrated in microfluidic chips. Our experimental and computational simulation results indicate that the transverse diffusion of solvents plays an important role in the morphological transformation of PS-b-P4VP assemblies in the confined flow condition. We find that the mixing time (tmix) between a BCP/tetrahydrofuran (THF) solution and water affects the morphological transformation. Micellar morphologies are intended to transform from aggregates to ordered spherical structures under a relatively long mixing time (tmix). In addition, it is observed that the size of the micelles decreases with the increase of the flow velocity ratio by tuning the hydrodynamic conditions of the flows. Moreover, by adjusting the initial polymer solution concentration, temperature, and weight fraction of the introduced homopolystyrene (hPS), which can affect the viscosity of the BCP solution, the flow diffusion in the microfluidic chip and the resulted micellar structures can also be readily adjusted. The current study provides a new flow-driven method to adjust the micellar ordered structural transformation under the nonequilibrium state.

19.
Int J Neuropsychopharmacol ; 22(2): 143-156, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407503

RESUMEN

Background: Phosphodiesterase 4 is a promising target for developing novel antidepressants. However, prototype phosphodiesterase 4 inhibitors show severe side effects, including nausea and vomiting. N-Isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel phosphodiesterase 4 inhibitor with little emetic potential. In the present study, we investigated the inhibitory effect of FCPR03 on chronic unpredictable mild stress-induced, depressive-like behaviors in mice and explored the underlying mechanisms. Methods: The depression model of mice was established by chronic unpredictable mild stress. Forced swim test, tail suspension test, and sucrose preference test were used to assess depressive-like behaviors. Golgi-staining was utilized to analyze dendritic morphology and spine density. The level of cAMP was measured by enzyme-linked immnosorbent assay assay. Western blot was used to evaluate protein levels of phosphorylated cAMP-response element binding protein, protein kinase B, glycogen synthase kinase-3ß, and brain derived neurotrophic factor in both hippocampus and prefrontal cortex. Postsynaptic density protein 95 and synapsin 1 were also detected by western blot in the hippocampi. Results: Treatment with FCPR03 (0.5-1.0 mg/kg, i.p.) increased consumption of sucrose in the sucrose preference test in mice exposed to chronic unpredictable mild stress. FCPR03 shortened the immobility time in forced swim test and tail suspension test without affecting locomotor activity. Furthermore, chronic unpredictable mild stress decreased the dendritic spine density and dendritic length in the hippocampus. This change was accompanied by decreased expression of postsynaptic density protein 95 and synapsin 1. Interestingly, FCPR03 prevented dendritic spine loss and increased synaptic protein levels. Moreover, the levels of cAMP, phosphorylated cAMP-response element binding protein, and brain derived neurotrophic factor were elevated in chronic unpredictable mild stress-challenged mice after treatment with FCPR03. In addition, FCPR03 also enhanced the phosphorylation of both protein kinase B and glycogen synthase kinase-3ß in mice exposed to chronic unpredictable mild stress. Conclusion: The present study suggests that FCPR03 could prevent both depressive-like behaviors and spine loss induced by chronic unpredictable mild stress in the mice hippocampi.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Espinas Dendríticas/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Estrés Psicológico/complicaciones , Animales , Espinas Dendríticas/patología , Depresión/etiología , Modelos Animales de Enfermedad , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL
20.
FASEB J ; 32(7): 3832-3843, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29447005

RESUMEN

Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease. Here, we examined the expression of ASICs in acutely resected human cortical tissue. Compared with mouse cortex, human cortical tissue showed a similar ratio of ASIC1a:ASIC2a expression, had reduced ASIC2b level, and exhibited a higher membrane:total ratio of ASIC1a. We further investigated the mechanism for higher surface trafficking of hASIC1a in heterologous cells. A single amino acid at position 285 was critical for increased N-glycosylation and surface expression of hASIC1a. Consistent with the changes in trafficking and current, cells expressing hASIC1a or mASIC1a S285P mutant had a higher acid-activated calcium increase and exhibited worsened acidotoxicity. These data suggest that ASICs are likely to have a larger impact on acidosis-induced neuronal injuries in humans than mice, and this effect is, at least in part, a result of more efficient trafficking of hASIC1a.-Xu, Y., Jiang, Y.-Q., Li, C., He, M., Rusyniak, W. G., Annamdevula, N., Ochoa, J., Leavesley, S. J., Xu, J., Rich, T. C., Lin, M. T., Zha, X.-M. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Protones , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/genética , Potenciales de Acción , Adolescente , Adulto , Animales , Células CHO , Calcio/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Cricetinae , Cricetulus , Femenino , Humanos , Activación del Canal Iónico , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA