Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 95(4): 959-965, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012310

RESUMEN

BACKGROUND: Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS: We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS: Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS: The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT: This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.


Asunto(s)
Células Endoteliales , Enfermedades Renales , Ratones , Animales , Células Endoteliales/metabolismo , Receptor TIE-2/metabolismo , Molécula 1 de Adhesión Celular Vascular , Fibrosis , Anticuerpos Monoclonales/farmacología , Enfermedades Renales/inducido químicamente , Ácido Fólico , Inflamación , Angiopoyetina 1 , Angiopoyetina 2
2.
Nature ; 543(7643): 65-71, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199314

RESUMEN

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.


Asunto(s)
Carcinoma Neuroendocrino/genética , Genoma Humano/genética , Genómica , Neoplasias Pancreáticas/genética , Secuencia de Bases , Proteínas de Unión a Calmodulina/genética , Ensamble y Desensamble de Cromatina/genética , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , ADN Glicosilasas/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Proteína EWS de Unión a ARN , Proteínas de Unión al ARN/genética , Serina-Treonina Quinasas TOR/metabolismo , Telómero/genética , Telómero/metabolismo
4.
Nature ; 545(7653): 175-180, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467829

RESUMEN

Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.


Asunto(s)
Genoma Humano/genética , Melanoma/genética , Mutación/genética , ADN Helicasas/genética , GTP Fosfohidrolasas/genética , Genes p16 , Humanos , Melanoma/clasificación , Proteínas de la Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Neurofibromatosis 1/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Factores de Empalme de ARN/genética , Transducción de Señal/efectos de los fármacos , Telomerasa/genética , Telómero/genética , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta/efectos adversos , Proteína Nuclear Ligada al Cromosoma X
5.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26909576

RESUMEN

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metilación de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Histona Demetilasas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteínas Nucleares/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores Citoplasmáticos y Nucleares/genética , Análisis de Supervivencia , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra
6.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25719666

RESUMEN

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Asunto(s)
Análisis Mutacional de ADN , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Reparación del ADN/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Marcadores Genéticos/genética , Inestabilidad Genómica/genética , Genotipo , Humanos , Ratones , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/tratamiento farmacológico , Platino (Metal)/farmacología , Mutación Puntual/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
BMC Med Genet ; 21(1): 183, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957924

RESUMEN

BACKGROUND: Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. CASE PRESENTATION: Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography-mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. CONCLUSIONS: Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Hiperhomocisteinemia/complicaciones , Proteinuria/diagnóstico , Adolescente , Errores Innatos del Metabolismo de los Aminoácidos/genética , Aminoácidos/sangre , Secuencia de Bases , Carnitina/análogos & derivados , Carnitina/sangre , Preescolar , ADN/sangre , ADN/genética , Cromatografía de Gases y Espectrometría de Masas , Homocisteína/sangre , Humanos , Hiperhomocisteinemia/genética , Masculino , Ácido Metilmalónico/orina , Proteinuria/etiología
8.
J Pathol ; 247(2): 214-227, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30350370

RESUMEN

Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Mutación , Neoplasias Complejas y Mixtas/genética , Antígenos CD/análisis , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/química , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Cadherinas/análisis , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios Transversales , Transición Epitelial-Mesenquimal , Receptores ErbB/análisis , Femenino , Predisposición Genética a la Enfermedad , Humanos , Queratinas/análisis , Metaplasia , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Complejas y Mixtas/química , Neoplasias Complejas y Mixtas/clasificación , Neoplasias Complejas y Mixtas/patología , Neurofibromina 1/genética , Fosfohidrolasa PTEN/genética , Fenotipo , Carga Tumoral , Proteína p53 Supresora de Tumor/genética
9.
Rheumatol Int ; 40(5): 811-819, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31377830

RESUMEN

Pancreatitis is uncommon in systemic lupus erythematosus (SLE) and is rarely reported in children, possibly being related to macrophage activation syndrome (MAS). The incidence of MAS in children with lupus pancreatitis is unknown, as is their prognosis. In this case-based review, we report a pediatric patient with SLE complicated with pancreatitis and MAS, and performed a literature review. We report an 11-year-old girl with SLE and MAS who developed pancreatitis on the second day of methylprednisolone pulse therapy (500 mg/day). We continued methylprednisolone pulse therapy, and performed three rounds of DNA-immunoadsorption and three rounds of hemoperfusion. A second course of methylprednisolone pulse therapy was initiated 9 days later. The patient received a monthly cyclophosphamide pulse therapy (10 mg/kg/day, 2 consecutive days every month) for 6 months, after which she was treated with mycophenolate mofetil 20 mg/kg/day. The condition of the patient gradually improved, her blood amylase and lipase decreased. She was in a stable condition during 13-month follow-up period. Review of the literature of pediatric patients with SLE and pancreatitis showed that there are 127 cases that have been reported in the past 30 years, 40 cases were excluded in our study because of inadequate information. Of the 87 patients included in our literature review, the mortality rate was 33.33%, and 52.86% of the patients with pancreatitis had MAS at the same time. Pancreatitis is uncommon in SLE, but must be suspected if a patient with SLE develops digestive symptoms. Patients with SLE with pancreatitis have a high incidence of MAS and high mortality rate; however, early recognition and effective treatment can relieve the disease symptoms.


Asunto(s)
Lupus Eritematoso Sistémico/diagnóstico , Síndrome de Activación Macrofágica/diagnóstico , Pancreatitis/diagnóstico , Adolescente , Niño , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Síndrome de Activación Macrofágica/etiología , Masculino , Pancreatitis/etiología
10.
BMC Pediatr ; 20(1): 456, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008347

RESUMEN

BACKGROUND: X-linked lymphoproliferative disease (XLP) is a rare inherited X-linked primary immunodeficiency diseases (PID). One such disease, X-linked inhibitor of apoptosis protein (XIAP) deficiency, is characterized by Epstein-Barr virus-related hemophagocytic lymphohistiocytosis (EBV-HLH). However, EBV-HLH with coronary artery dilation and acute renal injury (AKI) in children is unusual. CASE PRESENTATION: We report the case of a young boy aged 17 months with a novel XIAP variant. He was initially diagnosed with EBV-HLH based on the HLH-2004 diagnostic criteria and the condition was accompanied by coronary artery dilation and acute renal injury. The comprehensive genetic analysis of peripheral blood-derived DNA revealed a hemizygous variant of the XIAP gene [c.116G > C(p.G39A)], which was inherited from his mother (heterozygous condition). After combined treatment with rituximab, intravenous immunoglobulin, corticosteroids, antiviral drugs, and mycophenolate mofetil (MMF) in addition to supportive therapy, his clinical manifestations and laboratory indexes were improved. The patient achieved complete remission with MMF treatment in the 8-month follow-up. CONCLUSIONS: We report the [c.116G > C(p.G39A)] variant in the XIAP gene for the first time in a case of XLP-2 associated with EBV-HLH. For male patients with severe EBV-HLH, the possibility of XLP should be considered and molecular genetic testing should be used early in auxiliary diagnosis. Reports of EBV-HLH with coronary artery dilation and AKI in children are rare. In the patients with EBV-HLH, color Doppler echocardiography and urine tests should be monitored regularly. If necessary, renal biopsy can be performed to clarify the pathology. Treatment with rituximab, immunosuppressors and supportive therapy achieved a good effect, but long-term follow-up is required.


Asunto(s)
Lesión Renal Aguda , Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Niño , Vasos Coronarios , Dilatación , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Herpesvirus Humano 4/genética , Humanos , Lactante , Linfohistiocitosis Hemofagocítica/complicaciones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Masculino , Proteína Inhibidora de la Apoptosis Ligada a X/genética
11.
Int J Cancer ; 144(5): 1049-1060, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30178487

RESUMEN

Cutaneous melanoma accounts for at least >10% of all cancers in adolescents and young adults (AYA, 15-30 years of age) in Western countries. To date, little is known about the correlations between germline variants and somatic mutations and mutation signatures in AYA melanoma patients that might explain why they have developed a cancer predominantly affecting those over 65 years of age. We performed genomic analysis of 50 AYA melanoma patients (onset 10-30 years, median 20); 25 underwent whole genome sequencing (WGS) of both tumor and germline DNA, exome data were retrieved from 12 TCGA AYA cases, and targeted DNA sequencing was conducted on 13 cases. The AYA cases were compared with WGS data from 121 adult cutaneous melanomas. Similar to mature adult cutaneous melanomas, AYA melanomas showed a high mutation burden and mutation signatures of ultraviolet radiation (UVR) damage. The frequencies of somatic mutations in BRAF (96%) and PTEN (36%) in the AYA WGS cohort were double the rates observed in adult melanomas (Q < 6.0 × 10-6 and 0.028, respectively). Furthermore, AYA melanomas contained a higher proportion of non-UVR-related mutation signatures than mature adult melanomas as a proportion of total mutation burden (p = 2.0 × 10-4 ). Interestingly, these non-UVR mutation signatures relate to APOBEC or mismatch repair pathways, and germline variants in related genes were observed in some of these cases. We conclude that AYA melanomas harbor some of the same molecular aberrations and mutagenic insults occurring in older adults, but in different proportions. Germline variants that may have conferred disease susceptibility correlated with somatic mutation signatures in a subset of AYA melanomas.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Células Germinativas/fisiología , Melanoma/genética , Mutación/genética , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas B-raf/genética , Secuenciación Completa del Genoma/métodos , Adulto Joven
12.
Gastroenterology ; 152(1): 68-74.e2, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856273

RESUMEN

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Reparación de la Incompatibilidad de ADN/genética , Mutación , Neoplasias Pancreáticas/genética , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Femenino , Genoma , Humanos , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Nature ; 491(7424): 399-405, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23103869

RESUMEN

Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.


Asunto(s)
Axones/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Genoma/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Animales , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Mutación , Proteínas/genética , Transducción de Señal
14.
J Pathol ; 237(3): 363-78, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26172396

RESUMEN

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2) = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Análisis Mutacional de ADN , Activación Enzimática , Amplificación de Genes , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Ligandos , Terapia Molecular Dirigida , Mutación , Fenotipo , Fosforilación , Medicina de Precisión , Valor Predictivo de las Pruebas , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Microambiente Tumoral
17.
Allergy Asthma Clin Immunol ; 19(1): 86, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742016

RESUMEN

BACKGROUND: Activated phosphoinositide3-kinase (PI3K) δ syndrome 1 (APDS1) is a novel inborn errors of immunity (IEIs) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD). APDS1 has a spectrum of clinical manifestations. Recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, hyper-IgM syndrome and autoimmunity are the common symptoms of this disease. CASE PRESENTATION: Patient 1 presented with recurrent respiratory infections, hepatosplenomegaly and hyper-IgM syndrome. Patient 2 developed early onset systemic lupus erythematosus (SLE)-like disease with resistant thrombocytopenia. c.3061 G > A and c.2314G > A variants in the PIK3CD gene were detected by whole exome sequencing in two patients respectively. c.2314G > A variant in PIK3CD gene of patient 2 is a newly report. After genetic diagnosis, two patients received sirolimus treatment and sirolimus alleviated clinical manifestations, including hepatosplenomegaly in patient 1 and thrombocytopenia in patient 2. CONCLUSION: Genetics diagnosis should be considered in patients with complicated clinical manifestations with no or insufficient response to the conventional therapies. If whole exome sequencing suggests a variant in PIK3CD gene, sirolimus may relieve hepatosplenomegaly and resistant thrombocytopenia. This is the first report of c.2314G > A variant in PIK3CD gene.

18.
Front Endocrinol (Lausanne) ; 14: 1089531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793283

RESUMEN

Background: Bromodomain and extracellular terminal (BET) family (including BRD2, BRD3, and BRD4) is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Currently, more than 30 targeted inhibitors have shown significant inhibitory effects against various tumors in preclinical and clinical trials. However, the expression levels, gene regulatory networks, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in adrenocortical carcinoma (ACC) have not been fully elucidated. Therefore, this study aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in patients with ACC, and elucidated the association between BET family expression and ACC. We also provided useful information on BRD2, BRD3, and BRD4 and potential new targets for the clinical treatment of ACC. Methods: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of BRD2, BRD3, and BRD4 in ACC using multiple online databases, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. Results: The expression levels of BRD3 and BRD4 were significantly upregulated in ACC patients at different cancer stages. Moreover, the expression of BRD4 was significantly correlated with the pathological stage of ACC. ACC patients with low BRD2, BRD3, and BRD4 expressions had longer survival than patients with high BRD2, BRD3, and BRD4 expressions. The expression of BRD2, BRD3, and BRD4 was altered by 5%, 5%, and 12% in 75 ACC patients, respectively. The frequency of gene alterations in the 50 most frequently altered BRD2, BRD3, and BRD4 neighboring genes in these ACC patients were ≥25.00%, ≥25.00%, and ≥44.44%, respectively. BRD2, BRD3, and BRD4 and their neighboring genes form a complex network of interactions mainly through co-expression, physical interactions, and shared protein domains. Molecular functions related to BRD2, BRD3, and BRD4 and their neighboring genes mainly include protein-macromolecule adaptor activity, cell adhesion molecule binding, and aromatase activity. Chemokine signaling pathway, thiamine metabolism, and olfactory transduction were found to be enriched as per the KEGG pathway analysis. SP1, NPM1, STAT3, and TP53 are key transcription factors for BRD2, BRD4, and their neighboring genes. MiR-142-3P, miR-484, and miR-519C were the main miRNA targets of BRD2, BRD3, BRD4, and their neighboring genes. We analyzed the mRNA sequencing data from 79 patients with ACC and found that ZSCAN12, DHX16, PRPF4B, EHMT1, CDK5RAP2, POMT1, WIZ, ZNF543, and AKAP8 were the top nine genes whose expression were positively associated with BRD2, BRD3, and BRD4 expression. The expression level of BRD2, BRD3, and BRD4 positively correlated with B cell and dendritic cell infiltration levels. BRD4-targeted drug PFI-1 and (BRD2, BRD3, and BRD4)-targeted drug I-BET-151 may have good inhibitory effects on the SW13 cell line. Conclusions: The findings of this study provide a partial basis for the role of BRD2, BRD3, and BRD4 in the occurrence and development of ACC. In addition, this study also provides new potential therapeutic targets for ACC, which can serve as a reference for future basic and clinical research.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Proteínas Nucleares/genética , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dominios Proteicos , Carcinoma Corticosuprarrenal/genética , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Neoplasias de la Corteza Suprarrenal/genética , Pronóstico , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/genética , Factores de Transcripción de Tipo Kruppel/genética
19.
Orphanet J Rare Dis ; 18(1): 297, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736751

RESUMEN

BACKGROUND: Chronic active Epstein-Barr virus infection (CAEBV) and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) are rare but life-threatening progressive diseases triggered by EBV infection. Glucocorticoid/immunosuppressants treatment is temporarily effective; however, most patients relapse and/or progress. Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy; however, there are risks of transplantation-associated complications. Currently there is no standard treatment for CAEBV and EBV-HLH. Programmed death protein 1 (PD-1) inhibitors have achieved a high response in many EBV-related diseases. Sintilimab (a recombinant human IgG4 monoclonal antibody against PD-1) disrupts the interaction between PD-1 and its ligand, leading to T cell reinvigoration. METHODS: A retrospective analysis was performed on three children with CAEBV or EBV-HLH in the Children's Hospital of Soochow University between 12 December 2020 and 28 November 2022. The efficacy of sintilimab was evaluated. RESULTS: Three patients, including two males and one female, were analyzed. Among them, two children were diagnosed with CAEBV with intermittent fever for more than four years, and one child was diagnosed with EBV-HLH. After sintilimab treatment and a mean follow-up of 17.1 months (range 10.0-23.3 months), patients 1 and 3 achieved a complete clinical response and patient 2 achieved a partial clinical response. All three children showed a > 50% decrease in EBV-DNA load in both blood and plasma. EBV-DNA copies in sorted T, B, and NK cells were also markedly decreased after sintilimab treatment. CONCLUSION: Our data supported the efficacy of PD-1 targeted therapy in certain patients with CAEBV and EBV-HLH, and suggested that sintilimab could provide a cure for these diseases, without HSCT. More prospective studies and longer follow-up are needed to confirm these conclusions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Masculino , Niño , Humanos , Femenino , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4 , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Estudios Prospectivos , Estudios Retrospectivos
20.
Front Biosci (Landmark Ed) ; 28(9): 196, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37796681

RESUMEN

BACKGROUND: Serine hydroxymethyltransferase (SHMT) is a serine-glycine-one-carbon metabolic enzyme in which SHMT1 and SHMT2 encode the cytoplasmic and mitochondrial isoenzymes, respectively. SHMT1 and SHMT2 are key players in cancer metabolic reprogramming, and thus are attractive targets for cancer therapy. However, the role of SHMT in patients with renal cell carcinoma (RCC) has not been fully elucidated. We aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of SHMT1 and SHMT2 in patients with kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP); elucidate the association between SHMT expression and RCC; and identify potential new targets for clinical RCC treatment. METHODS: Several online databases were used for the analysis, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: SHMT1 and SHMT2 transcript levels were significantly down- and upregulated, respectively, in patients with KICH, KIRC, and KIRP, based on sample type, individual cancer stage, sex, and patient age. Compared to men, women with KIRC and KIRP showed significantly up- and downregulated SHMT1 transcript levels, respectively. However, SHMT2 transcript levels were significantly upregulated in the patients mentioned above. KIRC and KIRP patients with high SHMT1 expression had longer survival periods than those with low SHMT1 expression. In patients with KIRC, the findings were similar to those mentioned above. However, in KICH patients, the findings were the opposite regarding SHMT2 expression. SHMT1 versus SHMT2 were altered by 9% versus 3% (n = 66 KICH patients), 4% versus 4% (n = 446 KIRC patients), and 6% versus 7% (n = 280 KIRP patients). SHMT1 versus SHMT2 promoter methylation levels were significantly up- and downregulated in patients with KIRP versus KIRC and KIRP, respectively. SHMT1, SHMT2, and their neighboring genes (NG) formed a complex network of interactions. The molecular functions of SHMT1 and its NG in patients with KICH, KIRC, and KIRP, included clathrin adaptor, metalloendopeptidase, and GTPase regulator activities; lipid binding, active transmembrane transporter activity, and lipid transporter activity; and type I interferon receptor binding, integrin binding, and protein heterodimerization, respectively. Their respective Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were involved in lysosome activity, human immunodeficiency virus 1 infection, and endocytosis; coronavirus disease 2019 and neurodegeneration pathways (multiple diseases); and RIG-I-like receptor signaling pathway, cell cycle, and actin cytoskeleton regulation. The molecular functions of SHMT2 and its NG in patients with KICH, KIRC, and KIRP included cell adhesion molecule binding and phospholipid binding; protein domain-specific binding, enzyme inhibitor activity, and endopeptidase activity; and hormone activity, integrin binding, and protein kinase regulator activity, respectively. For patients with KIRC versus KIRP, the KEGG pathways were involved in cAMP and calcium signaling pathways versus microRNAs (MiRNAs) in cancer cells and neuroactive ligand-receptor interactions, respectively. We identified the key transcription factors of SHMT1 and its NG. CONCLUSIONS: SHMT1 and SHMT2 expression levels were different in patients with RCC. SHMT1 and SHMT2 may be potential therapeutic and prognostic biomarkers in these patients. Transcription factor (MYC, STAT1, PPARG, AR, SREBF2, and SP3) and miRNA (miR-17-5P, miR-422, miR-492, miR-137, miR-30A-3P, and miR-493) regulations may be important strategies for RCC treatment.


Asunto(s)
COVID-19 , Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Masculino , Humanos , Femenino , Carcinoma de Células Renales/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Integrinas , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA