Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 152: 17-23, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30497706

RESUMEN

The cyano-substituted neonicotinoid insecticide, thiacloprid, is nowadays widely used in agriculture for controlling insect pests. However, it also simultaneously has adverse effects on the health of important pollinators, such as honey bees. Previous studies have reported that sublethal doses of neonicotinoids impaired immunocompetence, learning and memory performance, and homing behaviour in honey bees. In the present study, using LC-MS-based combined with GC-MS-based metabolomic approaches, we profiled the metabolic changes that occur in the head of honey bee after subchronic exposure to 2 mg/L thiacloprid over 3 days. The estimated total dose of thiacloprid fed to each bee was 0.12 µg. The results showed that there were 115 metabolites significantly affected in thiacloprid-treated bees compared to control. The metabolites with high level of abundance enriched to wide range pathways associated with oxidative stress and detoxification suggest that the honey bees have activated their detoxification system to resistant toxicity of thiacloprid. While, the reduction of serotonin suggest thiacloprid may hinder the brain activity implicated in learning and behaviour development. Our study expand the understanding of the molecular basis of the complex interactions between neonicotinoids and honey bees.


Asunto(s)
Abejas/efectos de los fármacos , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Tiazinas/toxicidad , Animales , Abejas/metabolismo , Metabolómica
2.
J Insect Sci ; 18(4)2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010928

RESUMEN

Carbendazim is nowadays widely used to control fungus in various nectariferous crops. Little is known about how honey bees, Apis mellifera L. (Hymenoptera: Apidae), respond to carbendazim exposure. In this study, the effects of field-realistic concentrations of carbendazim (4.516, 0.4516, and 0.04516 ppm) on the survival, biomarker enzyme activity (AChE, GST, CarE, and P450), and four antimicrobial peptide gene expression (hymenoptaecin, defensin, apidaecin, and abaecin) in forager honey bees were evaluated. The forager bees were fed with the pesticides for 10 d. The results showed that the field-realistic concentrations of carbendazim did not affect survival; activities of AChE, GST, and CarE; and expression levels of defensin and abaecin in forager bees. However, 4.516, 0.4516, and 0.04516 ppm of carbendazim all significantly inhibited the expression of hymenoptaecin and apidaecin (P < 0.01), while P450 (7-ethoxycoumarin-O-deethylase) activity was downregulated by 4.516 ppm of carbendazim (P < 0.05). Our results indicate that the field-realistic concentrations of carbendazim may alter the immune response and P450-mediated detoxification of honey bees. Thus, carbendazim should be discreetly used on nectariferous crops during florescence.


Asunto(s)
Abejas/efectos de los fármacos , Bencimidazoles/efectos adversos , Carbamatos/efectos adversos , Fungicidas Industriales/efectos adversos , Expresión Génica/efectos de los fármacos , Longevidad/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Abejas/genética , Abejas/fisiología , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
3.
Cell Biosci ; 14(1): 86, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937838

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS: In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS: Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.

4.
Cell Rep ; 43(3): 113964, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489263

RESUMEN

Microglia are versatile regulators in brain development and disorders. Emerging evidence links microRNA (miRNA)-mediated regulation to microglial function; however, the exact underlying mechanism remains largely unknown. Here, we uncover the enrichment of miR-137, a neuropsychiatric-disorder-associated miRNA, in the microglial nucleus, and reveal its unexpected nuclear functions in maintaining the microglial global transcriptomic state, phagocytosis, and inflammatory response. Mechanistically, microglial Mir137 deletion increases chromatin accessibility, which contains binding motifs for the microglial master transcription factor Pu.1. Through biochemical and bioinformatics analyses, we propose that miR-137 modulates Pu.1-mediated gene expression by suppressing Pu.1 binding to chromatin. Importantly, we find that increased Pu.1 binding upregulates the target gene Jdp2 (Jun dimerization protein 2) and that knockdown of Jdp2 significantly suppresses the impaired phagocytosis and pro-inflammatory response in Mir137 knockout microglia. Collectively, our study provides evidence supporting the notion that nuclear miR-137 acts as a transcriptional modulator and that this microglia-specific function is essential for maintaining normal adult brain function.


Asunto(s)
MicroARNs , Microglía , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Encéfalo/metabolismo , Homeostasis , Cromatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA