Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Chem Phys ; 160(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38174792

RESUMEN

The on-demand assembly of 2D heterostructures has brought about both novel interfacial physical chemistry and optoelectronic applications; however, existing studies rarely focus on the complementary part-the 2D cavity, which is a new-born area with unprecedented opportunities. In this study, we have investigated the electric field inside a spacer-free 2D cavity consisting of a monolayer semiconductor and a gold film substrate. We have directly captured the built-in electric field crossing a blinking 2D cavity using a Kelvin probe force microscopy-Raman system. The simultaneously recorded morphology (M), electric field (E), and optical spectroscopy (O) mapping profile unambiguously reveals dynamical fluctuations of the interfacial electric field under a constant cavity height. Moreover, we have also prepared non-blinking 2D cavities and analyzed the gap-dependent electric field evolution with a gradual heating procedure, which further enhances the maximum electric field exceeding 109 V/m. Our work has revealed substantial insights into the built-in electric field within a 2D cavity, which will benefit adventures in electric-field-dependent interfacial sciences and future applications of 2D chemical nanoreactors.

2.
Nano Lett ; 23(14): 6581-6587, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37439779

RESUMEN

Although selective singlet and triplet interlayer exciton (IX) emission of transition metal dichalcogenides (TMD) heterostructures can be achieved by applying an electric or magnetic field, the device structure is complex and a low temperature is usually required. Here, we demonstrate a simple all-optical approach to selectively enhance the emission of singlet and triplet IX by selectively coupling singlet or triplet IX of a WS2/WSe2 heterostructure to a SiO2 microsphere cavity. Angle-resolved photoluminescene reveals that the transition dipole of triplet IX is almost along the out-of-plane direction, while singlet IX only has 69% out-of-plane dipole moment contribution. Since the out-of-plane dipole presents a higher Purcell factor within the cavity, we can simultaneously enhance the emission intensity of IX and control the emissive IX species at room temperature in an all-optical route. Importantly, we demonstrate an all-optical valley polarization switch with a record high on/off ratio of 35.

3.
Angew Chem Int Ed Engl ; 63(26): e202402343, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38639055

RESUMEN

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).

4.
Angew Chem Int Ed Engl ; 63(8): e202317942, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179820

RESUMEN

CO2 electroreduction (CO2 R) operating in acidic media circumvents the problems of carbonate formation and CO2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2 R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali-cation-free CO2 R in pure acid. However, without alkali cations, stabilizing *CO2 intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single-atom active site with energetically localized d states to strengthen the adsorbate-surface interactions, which stabilizes *CO2 intermediates at the acidic interface (pH=1). As a result, we realize CO2 conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2 is successfully converted in cation exchanged membrane-based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2 R compared to alkaline conditions, since the potential-limiting step, *CO2 to *COOH, is pH-dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2 R.

5.
J Am Chem Soc ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763975

RESUMEN

The Leidenfrost effect describes a fascinating phenomenon in which a liquid droplet, when deposited onto a very hot substrate, will levitate on its own vapor layer and undergo frictionless movements. Driven by the significant implications for heat transfer engineering and drag reduction, intensive efforts have been made to understand, manipulate, and utilize the Leidenfrost effect on macrosized objects with a typical size of millimeters. The Leidenfrost effect of nanosized objects, however, remains unexplored. Herein, we report on an unprecedented Leidenfrost effect of single nanosized sulfur particles at room temperature. It was discovered when advanced dark-field optical microscopy was employed to monitor the dynamic sublimation process of single sulfur nanoparticles sitting on a flat substrate. Despite the phenomenological similarity, including the vapor-cushion-induced levitation and the extended lifetime, the Leidenfrost effect at the nanoscale exhibited two extraordinary features that were obviously distinct from its macroscopic counterpart. First, there was a critical size below which single sulfur nanoparticles began to levitate. Second, levitation occurred in the absence of the temperature difference between the nanoparticle and the substrate, which was barely possible for macroscopic objects and underscored the value of bridging the gap connecting the Leidenfrost effect and nanoscience. The sublimation-triggered spontaneous takeoff of single sulfur nanoparticles shed new light on its further applications, such as nanoflight.

6.
Nature ; 541(7635): 62-67, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27974803

RESUMEN

'Blinking', or 'fluorescence intermittency', refers to a random switching between 'ON' (bright) and 'OFF' (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

7.
J Am Chem Soc ; 144(28): 12747-12755, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35815841

RESUMEN

The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.

8.
Nano Lett ; 21(16): 6773-6780, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34382814

RESUMEN

Polarity often refers to the charge carrier type of a semiconductor or the charging state of a functional group, generally dominating their functionality and performance. Herein we uncover a spontaneous and stochastic polarity-flipping phenomenon in monolayer WSe2, which randomly switches between the n-type and p-type states and is essentially triggered by fluctuating carrier flows from or to the adjacent WS2 monolayer. We have traced such fluctuating carrier flows by interfacial photocurrent measurements in a zero-bias two-terminal device. Such polarity flipping results in switching between the negative and positive correlations between the emission intensities of WS2 and WSe2 in the heterobilayer, which is further well-controlled by the electrostatic gate-tuning experiments in a capacitor-structure device. Our work not only demonstrates giant and intermittent carrier flows through long-range coupling in 2D heterostructures and a consequent spontaneous polarity flipping phenomenon but also provides a two-emitter system with a switchable correlation sign that could project future applications in optical logic devices.

9.
Angew Chem Int Ed Engl ; 61(34): e202207300, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35761506

RESUMEN

To enhance the fluorescence efficiency of semiconductor nanocrystal quantum dots (QDs), strategies via enhancing photo-absorption and eliminating non-radiative relaxation have been proposed. In this study, we demonstrate that fluorescence efficiency of molybdenum disulfide quantum dots (MoS2 QDs) can be enhanced by single-atom metal (Au, Ag, Pt, Cu) modification. Four-fold enhancement of the fluorescence emission of MoS2 QDs is observed with single-atom Au modification. The underlying mechanism is ascribed to the passivation of non-radiative surface states owing to the new defect energy level of Au in the forbidden band that can trap excess electrons in n-type MoS2 , increasing the recombination probability of conduction band electrons with valence band holes of MoS2 . Our results open an avenue for enhancing the fluorescence efficiency of QDs via the modification of atomically dispersed metals, and extend their scopes and potentials in a fundamental way for economic efficiency and stability of single-atom metals.

10.
Nano Lett ; 18(3): 1686-1692, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29376381

RESUMEN

Modulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10-100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump-probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.

11.
Nano Lett ; 17(6): 3982-3988, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28541055

RESUMEN

Polariton lasing is the coherent emission arising from a macroscopic polariton condensate first proposed in 1996. Over the past two decades, polariton lasing has been demonstrated in a few inorganic and organic semiconductors in both low and room temperatures. Polariton lasing in inorganic materials significantly relies on sophisticated epitaxial growth of crystalline gain medium layers sandwiched by two distributed Bragg reflectors in which combating the built-in strain and mismatched thermal properties is nontrivial. On the other hand, organic active media usually suffer from large threshold density and weak nonlinearity due to the Frenkel exciton nature. Further development of polariton lasing toward technologically significant applications demand more accessible materials, ease of device fabrication, and broadly tunable emission at room temperature. Herein, we report the experimental realization of room-temperature polariton lasing based on an epitaxy-free all-inorganic cesium lead chloride perovskite nanoplatelet microcavity. Polariton lasing is unambiguously evidenced by a superlinear power dependence, macroscopic ground-state occupation, blueshift of the ground-state emission, narrowing of the line width and the buildup of long-range spatial coherence. Our work suggests considerable promise of lead halide perovskites toward large-area, low-cost, high-performance room-temperature polariton devices and coherent light sources extending from the ultraviolet to near-infrared range.

12.
Small ; 13(35)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28639278

RESUMEN

The gate-tunable phonon properties in bilayer MoS2 are shown to be dependent on excitation energy. Raman intensity, Raman shift, and linewidth are affected by resonant excitation, while a nonresonant laser does not influence the intensity significantly. The gate-dependent Raman shift of A1g mode (either blue-, red-, or no-shift) is a result of the combined effect of antibonding electron and resonant-related decoupling effect. Although the decoupling effect cannot be directly measured due to the resonant background, it can be indirectly and qualitatively probed by observing A1g mode. This study on gate-tunable resonant Raman spectroscopy has clarified the influence of carrier doping on phonon properties and demonstrates a new degree of freedom in manipulating phonons in 2D material systems.

13.
Nano Lett ; 15(8): 5653-7, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26203670

RESUMEN

Controlling nonlinear light-matter interaction is important from a fundamental science point of view as well as a basis for future optoelectronic devices. Recent advances in two-dimensional crystals have created opportunities to manipulate nonlinear processes electrically. Here we report a strong second-harmonic generation (SHG) in a 2D WSe2 bilayer crystal caused by a back gate field. This unusual process takes place only when the gate polarity causes charge accumulation rather than depletion. Analysis based on a bond-charge model traces the origin of SHG to the nonuniform field distribution within a single monolayer, caused by the accumulated submonolayer screening charge in the tungsten plane. We name this phenomenon charge-induced SHG (CHISHG), which is fundamentally different from the field- or current-induced SHG. Our findings provide a potentially valuable technique for understanding and noninvasive probing of charge and current distributions in future low dimensional electronic devices.

14.
Proc Natl Acad Sci U S A ; 109(24): 9281-6, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22623525

RESUMEN

Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic "hot" spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible "G-SERS tape" (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates.

15.
Nano Lett ; 13(11): 5666-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147753

RESUMEN

Chiral structure determination of single-walled carbon nanotube (SWNT), including its handedness and chiral index (n,m), has been regarded as an intractable issue for both fundamental research and practical application. For a given SWNT, the n and m values can be conveniently deduced if an arbitrary two of its three crucial structural parameters, that is, diameter d, chiral angle θ, and electron transition energy E(ii), are obtained. Here, we have demonstrated a novel approach to derive the (n,m) indices from the θ, d, and E(ii) of SWNTs. Handedness and θ were quickly measured based on the chirality-dependent alignment of SWNTs on graphite surface. By combining their measured d and E(ii), (n,m) indices of SWNTs can be independently and uniquely identified from the (θ,d) or (θ,E(ii)) plots, respectively. This approach offers intense practical merits of high-efficiency, low-cost, and simplicity.

16.
ACS Nano ; 18(27): 17578-17585, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38919006

RESUMEN

Chiral materials are the focus of research in a variety of fields such as chiroptical sensing, biosensing, catalysis, and spintronics. Twisted two-dimensional (2D) materials are rapidly developing into a class of atomically thin chiral materials that can be effectively modulated through interlayer twist. However, chirality transfer in chiral 2D materials has not been reported. Here, we show that the chirality from the twist interface of graphene can directly transfer to achiral few-layer graphene and lead to a strong chiroptical response probed with circularly polarized Raman spectroscopy. Distinct Raman optical activity (ROA) for the interlayer shear modes in achiral few-layer graphene is observed, with the degree of polarization reaching as high as 0.5. These findings demonstrate the programmability of chiroptical response through stacking and twist engineering in 2D materials and offer insights into the transfer of chirality in atomically thin chiral materials for optical and electronic applications.

17.
Small ; 9(8): 1206-24, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23529788

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) imparts Raman spectroscopy with the capability of detecting analytes at the single-molecule level, but the costs are also manifold, such as a loss of signal reproducibility. Despite remarkable steps having been taken, presently SERS still seems too young to shoulder analytical missions in various practical situations. By the virtue of its unique molecular structure and physical/chemical properties, the rise of graphene opens up a unique platform for SERS studies. In this review, the multi-role of graphene played in SERS is overviewed, including as a Raman probe, as a substrate, as an additive, and as a building block for a flat surface for SERS. Apart from versatile improvements of SERS performance towards applications, graphene-involved SERS studies are also expected to shed light on the fundamental mechanism of the SERS effect.

18.
Nat Commun ; 14(1): 1298, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894571

RESUMEN

Electrochemical CO2 reduction (CO2R) to ethylene and ethanol enables the long-term storage of renewable electricity in valuable multi-carbon (C2+) chemicals. However, carbon-carbon (C-C) coupling, the rate-determining step in CO2R to C2+ conversion, has low efficiency and poor stability, especially in acid conditions. Here we find that, through alloying strategies, neighbouring binary sites enable asymmetric CO binding energies to promote CO2-to-C2+ electroreduction beyond the scaling-relation-determined activity limits on single-metal surfaces. We fabricate experimentally a series of Zn incorporated Cu catalysts that show increased asymmetric CO* binding and surface CO* coverage for fast C-C coupling and the consequent hydrogenation under electrochemical reduction conditions. Further optimization of the reaction environment at nanointerfaces suppresses hydrogen evolution and improves CO2 utilization under acidic conditions. We achieve, as a result, a high 31 ± 2% single-pass CO2-to-C2+ yield in a mild-acid pH 4 electrolyte with >80% single-pass CO2 utilization efficiency. In a single CO2R flow cell electrolyzer, we realize a combined performance of 91 ± 2% C2+ Faradaic efficiency with notable 73 ± 2% ethylene Faradaic efficiency, 31 ± 2% full-cell C2+ energy efficiency, and 24 ± 1% single-pass CO2 conversion at a commercially relevant current density of 150 mA cm-2 over 150 h.

19.
Nat Commun ; 14(1): 6701, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872139

RESUMEN

Excitons in monolayer semiconductors, benefitting from their large binding energies, hold great potential towards excitonic circuits bridging nano-electronics and photonics. However, achieving room-temperature ultrafast on-chip electrical modulation of excitonic distribution and flow in monolayer semiconductors is nontrivial. Here, utilizing lateral bias, we report high-speed electrical modulation of the excitonic distribution in a monolayer semiconductor junction at room temperature. The alternating charge trapping/detrapping at the two monolayer/electrode interfaces induces a non-uniform carrier distribution, leading to controlled in-plane spatial variations of excitonic populations, and mimicking a bias-driven excitonic flow. This modulation increases with the bias amplitude and eventually saturates, relating to the energetic distribution of trap density of states. The switching time of the modulation is down to 5 ns, enabling high-speed excitonic devices. Our findings reveal the trap-assisted exciton engineering in monolayer semiconductors and offer great opportunities for future two-dimensional excitonic devices and circuits.

20.
ACS Nano ; 17(11): 10783-10791, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259985

RESUMEN

The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (∼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA