Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nanomedicine ; 24: 102144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31838150

RESUMEN

Bioreducible crosslinked polyplexes from branched polyethylenimine (BPEI, 10 kDa) were successfully constructed through DNA neutralization by disulfide-linked azidated BPEI (PAZ) and subsequent DNA condensation by azadibenzocyclooctyne-modified BPEI (PDB), following their self-crosslinking via azide-azadibenzocyclooctyne click chemistry. Click-crosslinked cationic polyplexes (c-polyplexes) revealed high extracellular colloidal stability against negative heparin and ions while intracellular bioreducible degradability for efficient gene unpacking. In vitro gene transfection in cancer cells indicated that the c-polyplexes produced markedly higher transfection efficiency than non-crosslinked counterparts in the serum. The c-polyplexes also had prolonged circulation kinetics, elevated gene accumulation level in SKOV-3 tumor xenografted in a mouse model and in turn superior transgene expression in the tumor. By small hairpin RNA for VEGF silencing, the c-polyplexes exerted significant tumor growth inhibition following with low systemic toxicity in the mouse. This study highlights the design of clickable polycations to construct crosslinked cationic nanopolyplexes for intravenous gene delivery against cancer.


Asunto(s)
Cationes/química , Química Clic/métodos , Terapia Genética/métodos , Polietileneimina/química , Cinética , Factor A de Crecimiento Endotelial Vascular/química
2.
Aging (Albany NY) ; 16(6): 5027-5037, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38517365

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.


Asunto(s)
Hipertensión Pulmonar , Hormonas Peptídicas , Hipertensión Arterial Pulmonar , Ratas , Ratones , Animales , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Sirtuina 1/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar , Estrés Oxidativo , Inflamación , Hipoxia , Superóxido Dismutasa/metabolismo , Peso Corporal
3.
Front Pharmacol ; 14: 1066758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713845

RESUMEN

Introduction: Atherosclerosis is the main cause of many cardiovascular diseases and contributes to morbidity and mortality worldwide. The formation of macrophage-derived foam cells plays a critical role in the early stage of atherosclerosis pathogenesis. Diterpenoids found in the flowers of Callicarpa rubella Lindl., a traditional Chinese medicine, have been reported to have anti-inflammatory activity. However, little is known about the effects of these diterpenoids on macrophage foam cell formation. Methods: A macrophage-derived foam cell formation model was established by treating RAW264.7 cells with oxidized low-density lipoprotein (ox-LDL) for 24 h. Oil red O staining were used to detect the intracellular lipids. The cholesterol efflux capacity was assayed by labeling cells with 22-NBD-cholesterol. Western blots and real-time PCRs were performed to quantify protein and mRNA expressions. Results: Two diterpenoid molecules, 14α-hydroxyisopimaric acid (C069002) and isopimaric acid (C069004), extracted from the flowers of Callicarpa rubella Lindl., significantly attenuated ox-LDL-induced foam cell formation in RAW264.7 macrophages. Further investigation showed that these two diterpenoids could promote cholesterol efflux from RAW264.7 macrophages to apolipoprotein A-I or high-density lipoproteins, which was associated with upregulated expression of ATP-binding cassette A1/G1 (ABCA1/G1), liver X receptor-α (LXRα), and peroxisome proliferator-activated receptor-γ (PPARγ). Unexpectedly, the diterpenoids C069002 and C069004 failed to enhance the mRNA transcription of the ABCG1 gene in macrophage-derived foam cells induced by ox-LDL. To evaluate the effects of diterpenoids on macrophage foam cell formation and determine the underlying mechanism, two drugs (lovastatin and rosiglitazone) were used as positive controls. Although both drugs could reduce macrophage foam cell formation and promote cholesterol efflux, they each had distinctive abilities to modulate the expression of cholesterol efflux-related genes. In contrast to lovastatin, rosiglitazone showed a similar influence on the expression of cholesterol efflux-related genes (including ABCA1, LXRα, and PPARγ) as the diterpenoids regardless of the presence or absence of ox-LDL, implying a similar mechanism by which they may exert atheroprotective effects. Conclusion: Our research indicates that diterpenoids effectively inhibit ox-LDL-induced macrophage foam cell formation by promoting cholesterol efflux from macrophages via the PPARγ-LXRα-ABCA1 pathway. Further investigation of diterpenoids as potential drugs for the treatment of atherosclerosis is warranted.

4.
Sci Rep ; 10(1): 4783, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179848

RESUMEN

Epigallocatechin-3-gallate (EGCG), a main active catechin in green tea, was reported to attenuate renal injury and hypertension. However, its effects on salt-induced hypertension and renal injury remain unclear. In the present study, we explored its effects on hypertension and renal damage in Dahl rats with salt-sensitive hypertension. We found that EGCG could lower blood pressure after 6 weeks of oral administration, reduce 24 h urine protein levels and decrease creatinine clearance, and attenuate renal fibrosis, indicating that it could attenuate hypertension by protecting against renal damage. Furthermore, we studied the renal protective mechanisms of EGCG, revealing that it could lower malondialdehyde levels, reduce the numbers of infiltrated macrophages and T cells, and induce the apoptosis of NRK-49F cells. Considering that the 67 kD laminin receptor (67LR) binds to EGCG, its role in EGCG-induced fibroblast apoptosis was also investigated. The results showed that an anti-67LR antibody partially abrogated the apoptosis-inducing effects of EGCG on NRK-49F cells. In summary, EGCG may attenuate renal damage and salt-sensitive hypertension via exerting anti-oxidant, anti-inflammatory, and apoptosis-inducing effects on fibroblasts; the last effect is partially mediated by 67LR, suggesting that EGCG represents a potential strategy for treating salt-sensitive hypertension.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Catequina/análogos & derivados , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Fitoterapia , Cloruro de Sodio Dietético/efectos adversos , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Catequina/administración & dosificación , Catequina/metabolismo , Catequina/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/patología , Malondialdehído/metabolismo , Ratas , Ratas Endogámicas Dahl , Receptores de Laminina/metabolismo
5.
Sci Rep ; 10(1): 10586, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601353

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Exp Biol Med (Maywood) ; 239(12): 1589-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25107895

RESUMEN

Subepithelial fibrosis is one of the common pathological features of asthmatic airway remodeling. During subepithelial fibrosis, type I collagen becomes the most abundant extracellular protein component. Studies have shown that Notch signaling participates in the progression of fibrosis; however, whether Notch signaling is involved in regulating type I collagen expression in airway fibroblasts remains unclear. The aim of the present study was to examine whether Notch signaling can regulate type I collagen expression in airway fibroblasts and to explore the underlying molecular mechanisms. Here, the expression of Notch signaling components was examined in mouse L929 cells and human MRC-5 cells. After upregulating or downregulating Notch signaling in these cell lines, col1α1 and col1α2 expression was examined. Using gene reporter assays, site-directed mutagenesis, and ChIP assays, the role of Hes1 binding sites in both the mouse and human COL1A1 and COL1A2 promoters was investigated. This study revealed that Notch signaling-related molecules (including Notch1, Hes1, and others) are expressed in L929 and MRC-5 cells and that Notch signaling regulates the expression of col1α1 and col1α2 in both cell lines. Additionally, over-expression of the Notch intracellular domain resulted in activation of the COL1A1 and COL1A2 promoters, and site-directed mutagenesis reporter assays revealed that Hes1 proteins might augment both mouse and human COL1A1 and COL1A2 promoter activity. Furthermore, ChIP assays confirmed that Hes1 binds to the COL1A1 and COL1A2 promoters in both L929 and MRC-5 cells. Therefore, it is reasonable to assume that Notch signaling can directly upregulate COL1A1 and COL1A2 promoter activity through a Hes1-dependent mechanism, which could serve as a possible target for pharmacotherapy of airway subepithelial fibrosis.


Asunto(s)
Colágeno Tipo I/biosíntesis , Fibroblastos/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Unión Proteica , Factor de Transcripción HES-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA