Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777955

RESUMEN

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , GTP Fosfohidrolasas , Miocitos Cardíacos , Fosfofructoquinasa-2 , Ubiquitinación , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Ratones , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Estrés Oxidativo , Apoptosis/genética , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Glucólisis , Humanos , Estabilidad Proteica
2.
Opt Lett ; 49(3): 446-449, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300027

RESUMEN

Sapphire fiber Bragg grating (SFBG) is a promising high-temperature strain sensor due to its melting point of 2045°C. However, the study on the long-term stability of SFBG under high temperature with an applied strain is still missing. In this paper, we reported for the first time to our knowledge on the critical temperature point of plastic deformation of the SFBG and demonstrated that the SFBG strain sensor can operate stably below 1200°C. At first, we experimentally investigated the topography and the spectral characteristics of the SFBG at different temperatures (i.e., 25°C, 1180°C, and 1600°C) with applied 650 µÎµ. The reflection peak of the SFBG exhibits a redshift of about 15 nm and broadens gradually within 8 h at 1600°C, and the tensile force value decreases by 0.60 N in this process. After the test, the diameter of the SFBG region decreases from 100 to 88.6 µm, and the grating period is extended from 1.76 to 1.79 µm. This indicates that the plastic deformation of the SFBG happened indeed, and it was elongated irreversibly. Moreover, the stability of the Bragg wavelength of the SFBG under high temperature with the applied strain was evaluated. The result demonstrates the SFBG can be used to measure strain reliably below 1200°C. Furthermore, the strain experiments of SFBG at 25°C, 800°C, and 1100°C have been carried out. A linear fitting curve with high fitness (R2 > 0.99) and a lower strain measurement error (<15 µÎµ) can be obtained. The aforementioned results make SFBG promising for high-temperature strain sensing in many fields, such as, power plants, gas turbines, and aerospace vehicles.

3.
Opt Lett ; 49(5): 1233-1236, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426981

RESUMEN

We demonstrate a novel, to the best of our knowledge, high-temperature pressure sensor based on a highly birefringent fiber Bragg grating (Hi-Bi FBG) fabricated in a dual side-hole fiber (DSHF). The Hi-Bi FBG is generated by a femtosecond laser directly written sawtooth structure in the DSHF cladding along the fiber core through the slow axis (i.e., the direction perpendicular to the dual-hole axis). The sawtooth structure serves as an in-fiber stressor and also generates Bragg resonance due to its periodicity. The DSHF was etched by hydrofluoric acid to increase its pressure sensitivity, and the diameter of two air holes was enlarged from 38.2 to 49.6 µm. A Hi-Bi FBG with a birefringence of up to 1.8 × 10-3 was successfully created in the etched DSHF. Two distinct reflection peaks could be observed by using a commercial FBG interrogator. Moreover, pressure measurement from 0 to 3 MPa at a high temperature of 700°C was conducted by monitoring the birefringence-induced peak splits and achieved a high-pressure sensitivity of -21.2 pm/MPa. The discrimination of the temperature and pressure could be realized by simultaneously measuring the Bragg wavelength shifts and peak splits. Furthermore, a wavelength-division-multiplexed (WDM) Hi-Bi FBG array was also constructed in the DSHF and was used for quasi-distributed high-pressure sensing up to 3 MPa. As such, the proposed femtosecond laser-inscribed Hi-Bi FBG is a promising tool for high-temperature pressure sensing in harsh environments, such as aerospace vehicles, nuclear reactors, and petrochemical industries.

4.
Mar Drugs ; 22(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393035

RESUMEN

Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 µg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.


Asunto(s)
Bivalvos , Intoxicación por Mariscos , Animales , Toxinas Marinas/química , Intoxicación por Mariscos/etiología , Intoxicación por Mariscos/prevención & control , Intoxicación por Mariscos/diagnóstico , Espectrometría de Masas en Tándem/métodos , Mariscos/análisis , Bivalvos/química , Medición de Riesgo , China
5.
Opt Express ; 31(3): 3831-3838, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785366

RESUMEN

We propose and experimentally demonstrate a femtosecond laser plane-by-plane (Pl-b-Pl) technology for inscription of high-quality fiber Bragg gratings (FBGs). The spherical aberration (SA) was introduced to elongate the focal volume, and then combined with the scanning process, an expanded rectangular refractive index modification (RIM) region can be achieved. Such RIM regions exhibit a length of 15 µm and a width of 14 µm. Note that it consists of a negative region and a positive region. We have systematically studied the influence of the overlap between the RIM region and fiber core on the spectrum of FBG. After optimizing, the core of a conventional single-mode fiber (SMF) is covered completely by using the positive RIM region, resulting in a significant enhancement of the coupling strength coefficient (i.e., 3177.6 m-1). A 500 µm long FBG assembled by using these RIM regions can achieve a high reflectivity of 95.83%. Moreover, the cladding mode resonances in transmission spectrum are suppressed thoroughly, since the localized effect in RIM region was avoided. In addition, this FBG exhibits a high birefringence of 2.13 × 10-4. Therefore, the proposed fabrication method can be used to inscribe high-quality FBGs that could be used in many fields such as communication, fiber laser, polarization-selective filtering and multi-parameter sensing.

6.
Opt Lett ; 48(2): 452-455, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638481

RESUMEN

We demonstrate a novel, to the best of our knowledge, two-dimensional vector bending sensor based on orthogonal helical Bragg gratings inscribed in the cladding of a conventional single-mode fiber (SMF). The helical cladding fiber Bragg gratings (HCFBGs) are created by using a femtosecond laser direct writing technology and a quarter-pitch graded index fiber (GIF) is used in front of the HCFBGs to diverge the core mode into fiber cladding. In contrast to the multimode resonance observed in conventional cladding Bragg gratings inscribed by using a femtosecond laser point-by-point (PbP) or line-by-line (LbL) technology, the proposed HCFBGs exhibit stable narrowband single-mode Bragg resonance. An HCFBG with a low peak reflectivity of -50.77 dB and a narrow bandwidth of 0.66 nm was successfully fabricated by using a lateral offset of 45 µm between the HCFBG and the fiber core axis. Moreover, two orthogonal HCFBGs were fabricated in the SMF cladding and used for vector bending sensing. Strong orientation dependence could be seen in omnidirectional bending measurement, exhibiting a maximum bending sensitivity of up to 50.0 pm/m-1, which is comparable to that in a multicore FBG. In addition, both the orientation and amplitude of bending vector could be reconstructed by using the measured Bragg wavelength shifts in two orthogonal HCFBGs. As such, the proposed HCFBGs could be used in many applications, such as structural health monitoring, robotic arms, and medical instruments.

7.
Opt Lett ; 48(7): 1922-1925, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221800

RESUMEN

A microbubble-probe whispering gallery mode resonator with high displacement resolution and spatial resolution for displacement sensing is proposed. The resonator consists of an air bubble and a probe. The probe has a diameter of ∼5 µm that grants micron-level spatial resolution. Fabricated by a CO2 laser machining platform, a universal quality factor of over 106 is achieved. In displacement sensing, the sensor exhibits a displacement resolution of 74.83 pm and an estimated measurement span of 29.44 µm. As the first microbubble probe resonator for displacement measurement, the component shows advantages in performance, and exhibits a potential in sensing with high precision.

8.
J Biol Chem ; 296: 100667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33864813

RESUMEN

The epoxyeicosatrienoic acid (EET) exerts beneficial effects on insulin resistance and/or hypertension. EETs could be readily converted to less biological active diols by soluble epoxide hydrolase (sEH). However, whether sEH inhibition can ameliorate the comorbidities of insulin resistance and hypertension and the underlying mechanisms of this relationship are unclear. In this study, C57BL/6 mice were rendered hypertensive and insulin resistant through a high-fat and high-salt (HF-HS) diet. The sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), was used to treat mice (1 mg/kg/day) for 8 weeks, followed by analysis of metabolic parameters. The expression of sEH and the sodium-glucose cotransporter 2 (SGLT2) was markedly upregulated in the kidneys of mice fed an HF-HS diet. We found that TPPU administration increased kidney EET levels, improved insulin resistance, and reduced hypertension. Furthermore, TPPU treatment prevented upregulation of SGLT2 and the associated increased urine volume and the excretion of urine glucose and urine sodium. Importantly, TPPU alleviated renal inflammation. In vitro, human renal proximal tubule epithelial cells (HK-2 cells) were used to further investigate the underlying mechanism. We observed that 14,15-EET or sEH knockdown or inhibition prevented the upregulation of SGLT2 upon treatment with palmitic acid or NaCl by inhibiting the inhibitory kappa B kinase α/ß/NF-κB signaling pathway. In conclusion, sEH inhibition by TPPU alleviated insulin resistance and hypertension induced by an HF-HS diet in mice. The increased urine excretion of glucose and sodium was mediated by decreased renal SGLT2 expression because of inactivation of the inhibitory kappa B kinase α/ß/NF-κB-induced inflammatory response.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Regulación de la Expresión Génica , Hipertensión/prevención & control , Resistencia a la Insulina , Riñón/metabolismo , Enfermedades Metabólicas/prevención & control , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Regulación hacia Abajo , Hipertensión/etiología , Hipertensión/metabolismo , Hipertensión/patología , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Transportador 2 de Sodio-Glucosa/genética
9.
Opt Express ; 30(16): 28710-28719, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299060

RESUMEN

We demonstrate the fabrication of a new highly birefringent cladding fiber Bragg grating (Hi-Bi CFBG) consisting of a pair of sawtooth stressors near the fiber core by using a femtosecond laser direct writing technology. The unique sawtooth structure serves as in-fiber stressor and also generates Bragg resonance due to its periodicity. After optimization of laser pulse energy, the Hi-Bi CFBG with a high birefringence of 2.2 × 10-4 and a low peak reflectivity of ∼ -24.5 dB (corresponding to ∼ 0.3%) was successfully fabricated in a conventional single-mode fiber (SMF). And then, a wavelength-division-multiplexed Hi-Bi CFBGs array and an identical Hi-Bi CFBGs array were successfully constructed. Moreover, a simultaneous measurement of torsion and strain at high temperature of 700 °C was realized by using the fabricated Hi-Bi CFBG, in which the torsion can be deduced by monitoring the reflection difference between the two polarization peaks and strain can be detected by measuring polarization peak wavelength. A high torsion sensitivity of up to 80.02 dB/(deg/mm) and a strain sensitivity of 1.06 pm/µÉ› were achieved. As such, the proposed Hi-Bi CFBG can be used as a mechanical sensor in many areas, especially in structural health monitoring at extreme conditions.

10.
Opt Express ; 30(10): 15998-16008, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221453

RESUMEN

We first propose and demonstrate a polarimetric fiber laser system for relative humidity (RH) sensing based on the beat frequency demodulation. A graphene oxide-coated D-shaped fiber (GDF) with a low insertion loss of 0.8 dB was embedded into a laser cavity to form an RH sensing probe. The output of the fiber laser could generate mode splitting between two orthogonal polarization modes due to birefringence of the GDF device. Hence, two types of beat signals, i.e., longitudinal mode beat frequency (LMBF) and polarization mode beat frequency (PMBF) could be generated synchronously. The experimental results indicated that the LMBFs of the fiber laser had almost no response to the ambient humidity, and the PMBFs of the fiber laser were very sensitive to the various RH levels. There was a good linear relationship between the PMBF and RH changes in the range of 30% to 98%. This fiber-optic RH sensor exhibited a sensitivity of 34.7 kHz/RH% with a high quality of fit (R2>0.997) during the ambient RH increase and decrease. Moreover, the average response and recovery times of the fiber-optic RH sensor were measured to be about 64.2 ms and 97.8 ms, respectively. Due to its long stability, reversibility, quick response time and low temperature cross-sensitivity (i.e., 0.12 RH%/°C), the proposed fiber-optic RH sensor could offer attractive applications in many fields, such as biology, chemical processing and food processing, etc.

11.
Opt Lett ; 47(20): 5413-5416, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240377

RESUMEN

A vectorial distributed acoustic sensing (vDAS) system is proposed and demonstrated for distributed two-dimensional vector vibration measurements based on phase-sensitive optical time-domain reflectometry (ΦOTDR). An optical pulse compression (OPC) algorithm was used to achieve high spatial resolution and suppress fading noise, and a Rayleigh-enhanced seven-core fiber (eSCF) was used to magnify the differentials of Rayleigh backscattering (RBS) in various cores undergoing vibrations. A combination of OPC and eSCF allows the system to fully quantify perturbations with a spatial resolution of 1.1 m and a strain resolution of 1.1 pε/√Hz, achieving a maximum acceleration sensitivity of 1.04 mrad/g at 60 Hz and an orientation reconstruction error of 1.92°. The proposed vDAS system can achieve vectorial distributed vibration sensing without the need for specific fiber layouts or complex reconstruction algorithms, increasing its potential for applications in vertical seismic profiles or pipeline inspection.

12.
Opt Lett ; 47(4): 758-761, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167518

RESUMEN

A multicore fiber Bragg grating (MC-FBG) array shape sensor is a powerful tool for a variety of applications. However, the efficient fabrication of high-quality MC-FBG arrays remains a problem. Here, we report for the first time, to the best of our knowledge, a new method of directly writing FBG arrays in a seven-core fiber (SCF) through the protective coating using femtosecond laser auto-positioning point-by-point technology, which is accomplished by image recognition and micro-displacement compensation. An MC-FBG array consisting of 140 individual FBGs with a grating length of 2 mm was successfully inscribed into seven cores of a 440 mm-long SCF. Each core contained 20 wavelength-division-multiplexed (WDM) FBGs with wavelengths ranging from 1522.11 nm to 1579.28 nm. In other words, the MC-FBG array consisted of 20 WDM nodes with an interval of 2 cm along the fiber, and each node contained seven identical FBGs integrated in parallel into the fiber cross-section. Moreover, the fabricated MC-FBG array exhibited a strong orientation dependence in bend sensing, with a maximum sensitivity of 55.49 pm/m-1. Subsequently, 2D and 3D shape sensing were demonstrated using the fabricated MC-FBG array, with maximum reconstruction errors per unit length of 4.51% and 10.81%, respectively. Hence, the MC-FBG arrays fabricated using the proposed method are useful in many applications, such as posture monitoring, smart robotics, and minimally invasive surgery.

13.
Pharmacol Res ; 183: 106367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35882293

RESUMEN

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Microbioma Gastrointestinal , Animales , Bacterias/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Ácidos Grasos Volátiles/metabolismo , Fructanos/farmacología , Fructanos/uso terapéutico , Inulina/metabolismo , Inulina/uso terapéutico , Ratones
14.
Sensors (Basel) ; 22(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080917

RESUMEN

We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as a light source. Three FBGs in the outer cores of SCF, which are not aligned in a straight line, are employed to test the vibration. These three FBGs have 120° angular separation in the SCF, and hence, vibration orientation and acceleration can be measured simultaneously. Moreover, the FBG in the central core was used as a reflector in the ring cavity laser, benefiting to resist external interference factors, such as temperature and strain fluctuation. Such a proposed accelerometer exhibits a working frequency bandwidth ranging from 4 to 68 Hz, a maximum sensitivity of 54.2 mV/g, and the best azimuthal angle accuracy of 0.21° over a range of 0-360°. Furthermore, we investigated the effect of strain and temperature on the performance of this sensor. The signal-to-noise ratio (SNR) only exhibits a fluctuation of ~1 dB in the range (0, 2289 µÎµ) and (50 °C, 1050 °C). Hence, such a vector accelerometer can operate in harsh environments, such as in aerospace and a nuclear reactor.

15.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501770

RESUMEN

Nanomechanical resonators made from suspended graphene combine the properties of ultracompactness and ultrahigh detection sensitivity, making them interesting devices for sensing applications. However, nanomechanical systems can be affected by membrane stress. The present work developed an optomechanical resonator for thermal stress sensing. The proposed resonator consists of a section of hollow core fiber (HCF) and a trampoline graphene-Au membrane. An all-optical system that integrated optical excitation and optical detection was applied. Then, the resonance frequency of the resonator was obtained through this all-optical system. In addition, this system and the resonator were used to detect the membrane's built-in stress, which depended on the ambient temperature, by monitoring the resonance frequency shift. The results verified that the temperature-induced thermal effect had a significant impact on membrane stress. Temperature sensitivities of 2.2646 kHz/°C and 2.3212 kHz/°C were obtained when the temperature rose and fell, respectively. As such, we believe that this device will be beneficial for the quality monitoring of graphene mechanical resonators.

16.
Am J Physiol Heart Circ Physiol ; 321(2): H353-H368, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142887

RESUMEN

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.


Asunto(s)
Aorta/efectos de los fármacos , Epóxido Hidrolasas/genética , Niacinamida/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Sirtuina 1/metabolismo , Rigidez Vascular/efectos de los fármacos , Complejo Vitamínico B/farmacología , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/efectos de los fármacos , Rigidez Vascular/genética , Vasodilatadores/farmacología , Proteínas Señalizadoras YAP
17.
Opt Express ; 29(12): 17700-17709, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154046

RESUMEN

We propose and demonstrate a temperature-insensitive directional transverse load sensor based on a fiber Bragg grating (FBG) inscribed in a section of dual side-hole fiber (DSHF). The application of transverse load results in an effective change in the refractive index and, consequently, changes in the DSHF birefringence. The directional transverse load response of the fabricated DSH-FBG was studied by monitoring the wavelength separations with transverse load applied in different direction with 15° increments. The load sensitivity exhibited two maxima and two minima in a polar coordinate system, achieving a maximum value of 699 pm/(N/mm) for transverse load applied along the slow axis and a minimum value of 285 pm/(N/mm) for transverse load applied along the fast axis. Subsequently, a finite element analysis (FEA) was conducted to simulate the resulting strain distribution of the DSHF with applied directional transverse load. The temperature response of the DSH-FBG transverse load sensor was also tested, yielding a low sensitivity of 1.5 × 10-2 pm/°C. Hence, the compact size, directional transverse load sensitivity, and temperature insensitivity of this device make it suitable for intelligent transverse load monitoring.

18.
Opt Express ; 29(20): 32615-32626, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615327

RESUMEN

Ultra-weak fiber Bragg grating (UWFBG) arrays are key elements for constructing large-scale quasi-distributed sensing networks for structural health monitoring. Conventional methods for creating UWFBG arrays are based on in-line UV exposure during fiber drawing. However, the UV-induced UWFBG arrays cannot withstand a high temperature above 450 °C. Here, we report for the first time, to the best of our knowledge, a new method for fabricating high-temperature-resistant UWFBG arrays by using a femtosecond laser point-by-point (PbP) technology. UWFBGs with a low peak reflectivity of ∼ - 45 dB (corresponding to ∼ 0.0032%) were successfully fabricated in a conventional single-mode fiber (SMF) by femtosecond laser PbP inscription through fiber coating. Moreover, the influences of grating length, laser pulse energy, and grating order on the UWFBGs were studied, and a grating length of 1 mm, a pulse energy of 29.2 nJ, and a grating order of 120 were used for fabricating the UWFBGs. And then, a long-term high-temperature annealing was carried out, and the results show that the UWFBGs can withstand a high temperature of 1000 °C and have an excellent thermal repeatability with a sensitivity of 18.2 pm/°C at 1000 °C. A UWFBG array consisting of 200 identical UWFBGs was successfully fabricated along a 2 m-long conventional SMF with an interval of 10 mm, and interrogated with an optical frequency domain reflectometer (OFDR). Distributed high-temperature sensing up to 1000 °C was demonstrated by using the fabricated UWFBG array and OFDR demodulation. As such, the proposed femtosecond laser-inscribed UWFBG array is promising for distributed high-temperature sensing in hash environments, such as aerospace vehicles, nuclear plants, and smelting furnaces.

19.
Opt Express ; 29(3): 4147-4158, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771000

RESUMEN

A highly sensitive fiberized hydrogen sensor based upon Mach-Zehnder interference (MZI) is experimentally demonstrated. The hydrogen sensor consists of an MZI realized by creating an air cavity inside the core of a half-pitch graded-index fiber (GIF) by use of femtosecond laser micromachining. Thermosensitive polymer was filled into the air cavity and cured by UV illumination. Subsequently, the external surface of the polymer-filled MZI was coated with Pt-loaded tungsten trioxide (WO3). The exothermic reaction occurs as Pt-loaded WO3 contacts the target of the sensing, i.e. hydrogen in the atmosphere, which leads to a significant local temperature rise on the external surface of the coated MZI sensor. The sensor exhibits a maximum sensitivity up to -1948.68 nm/% (vol %), when the hydrogen concentration increases from 0% to 0.8% at room temperature. Moreover, the sensor exhibits a rapid rising response time (hydrogen concentration increasing) of ∼38 s and falling response time (hydrogen concentration decreasing) of ∼15 s, respectively. Thanks to its small size, strong robustness, high accuracy and repeatability, the proposed in-fiber MZI hydrogen sensor will be a promising tool for hydrogen leakage tracing in many areas, such as safety production and hydrogen medical treatment.

20.
Opt Lett ; 46(11): 2742-2745, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061102

RESUMEN

Sapphire fiber Bragg gratings (SFBGs) inscribed by using femtosecond laser point-by-point (PbP) technology typically have an extremely low reflectivity due to the limited cross-sectional area of refractive index modulations (RIMs) created in sapphire fiber. Hence, we propose and experimentally demonstrate a filamentation process for fabricating PbP SFBGs. This approach provides an efficient method for producing SFBGs at various Bragg wavelengths with a higher reflectivity, since the filament tracks could enlarge the cross-sectional area of RIMs. The influences of the pulse energy and the focal depth on the generation and morphology of the filament tracks were studied, and after optimizing these parameters, high-quality filament tracks with a length of 90 µm and a width of 1.4 µm were produced into sapphire fiber with a diameter of 100 µm. These filament tracks were precisely assembled in sapphire fiber, generating an SFBG with a reflectivity of 2.3%. The total fabrication time for this SFBG only requires ${\sim}{1.1}\;{\rm s}$. Subsequently, a wavelength-division-multiplexed (WDM) SFBG array consisting of five SFBGs was efficiently constructed. Moreover, the high-temperature response of the SFBG array was investigated and the experimental results showed that the SFBG array can withstand a high temperature of 1600°C. Such a WDM SFBG array could serve as quasi-distributed high-temperature sensor which will be promising in many areas, i.e., metallurgical, chemical, and aviation industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA