RESUMEN
Metasurface-based color filters show great potential in imaging devices and color printing. However, it is still a great challenge to meet the high demand for large-area flexible displays with structural color filters. Here, a reflective color filter is developed with a sandwiched metasurface, where the photoresist grating, complementary silver grating and silicon nitride grating are sequentially stacked on the substrate. Analytical results show that bandpass reflective spectra can be achieved due to the combined influence of guided mode resonance and cavity resonance, and full-spectrum colors including three primary colors can be generated by merely varying the period of the metasurface. With only photolithography and deposition technology involved, large-area samples incorporating pixelated metasurfaces are easily fabricated. Metasurfaces with three periods of 540â nm, 400â nm and 320â nm are experimentally obtained having peak reflective efficiency of â¼ 60%, demonstrating red, green and blue colors as theoretical results. A stripe sample with the structural period varying from 250â nm to 550â nm is fabricated in an area of 10â mm × 30â mm, displaying full-color reflections as simulated. Finally, with metasurfaces of three structural periods, the pixelated Soochow University logo is fabricated in a larger area of â¼ 30â mm × 30â mm. Therefore, the proposed structure shows high compatible to roll-to-roll nano-imprinting for large-area flexible displays, with the photoresist film can be easily substituted by UV film in addition.
RESUMEN
We report the development of a unique scalable Fourier transform 4-f system for instantly structured illumination in lithography. In the 4-f system, coupled with a 1-D grating and a phase retarder, the ±1st order of diffracted light from the grating serve as coherent incident sources for creating interference patterns on the image plane. By adjusting the grating and the phase retarder, the interference fringes with consecutive frequencies, as well as their orientations and phase shifts, can be generated instantly within a constant interference area. We demonstrate that by adapting this scalable Fourier transform system into lithography, the pixelated nano-fringe arrays with arbitrary frequencies and orientations can be dynamically produced in the photoresist with high variation resolution, suggesting its promising application for large-area functional materials based on space-variant nanostructures in lithography.
RESUMEN
Segregation of waste crumb rubber powder (WR) modified asphalt binders the large-scale application of WR in asphalt. The method of microwave activation combined with chemical activation (KMWR) was proposed to improve storage stability and rheological properties of WR modified asphalt in this work. Storage stability and rheological properties of virgin asphalt, MWR modified asphalt, and KMWR modified asphalt were comparatively studied by the standard segregation test, bending beam rheometer (BBR) test, and dynamic shear rheometer (DSR) test. The effect of composite activation on waste rubber powder particles was studied by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) tests. The main results showed that after the physical and chemical composite activation, the storage stability of waste rubber powder modified asphalt was significantly improved, WR modified asphalt had better crack resistance, better rutting resistance, and better fatigue performance. After physical and chemical activation, WR was desulfurized, and a large number of active groups was grafted on the WR particles.