Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 117-126, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38114445

RESUMEN

Liquid biopsy as well as genotyping plays important roles in guiding the use of tumor-targeted drugs and monitoring the generation of drug resistance. However, current methods, such as next-generation sequencing (NGS) and pyrosequencing, require long analysis time and complicated steps. To achieve ultrafast and highly specific detection of cell-free DNA (cfDNA) from blood, we improved our recently developed FEN1-aided RPA (FARPA), which combined flap endonuclease 1 (FEN1)-catalyzed invasive reactions with recombinase polymerase amplification (RPA) by inactivating the RPA enzymes before invasive reactions, designing short RPA primers, and changing invasive reaction conditions. Using the L858R and T790M mutations as examples, FARPA was sensitive to detect 5 copies of targeted mutants, specific to sense the mutants with an abundance as low as 0.01% from blood, and ultrafast to get results within 40 min. The method was readily expended to genotyping, and 15 min was enough to report the allele species directly from oral swab samples by coupling quick DNA extraction reagents. Validation was carried out by detecting clinical samples, including 20 cfDNA from patients with non-small cell lung cancer (NSCLC) for liquid biopsy and 43 human genomic DNA (gDNA) purified from blood (33) or lysed from oral swabs (10) for genotyping, giving 100% agreement with NGS and pyrosequencing, respectively. Furthermore, a portable battery-driven device with dual-channel fluorescence detection was successfully constructed to facilitate point-of-care testing (POCT) of liquid biopsy and genotyping, providing doctors with a potential tool to achieve genotyping- or mutant-guided personalized medicine at emergency or source-limited regions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas , ADN/genética
2.
IET Nanobiotechnol ; 17(3): 269-280, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36786285

RESUMEN

Currently, organic solvents are necessary for the preparation of anionic liposomes for siRNA delivery. The removal of organic solvent is time-consuming and the residual organic solvent is not only a hidden danger, but also affects the stability of anionic liposomes. Glycerol, which is physiologically compatible and does not need to be removed, is used to promote the dispersion of lipids and the formation of anionic liposomes. Additionally, the preparation process is simple and not time-consuming. The results showed that anionic liposomes, which were typically spherical with a particle size of 188.9 nm were successfully prepared with glycerol. And with the help of Ca2+ , siRNA was encapsulated in anionic liposomes. The highest encapsulation efficiency at 2.4 mM Ca2+ reached 91%. And the formation of calcium phosphate could promote the endosomal escape of siRNA effectively. The results from cell viability showed that the anionic liposomes had no obvious cytotoxicity. It was also verified that anionic liposomes could improve the resistance of siRNA against degradation. Additionally, siRNA delivered by anionic liposomes could play an effective role in knockout. Therefore, anionic liposomes prepared with glycerol will be a safe and effective delivery platform for siRNA and even other nucleic acid drugs.


Asunto(s)
Glicerol , Liposomas , ARN Interferente Pequeño , Tamaño de la Partícula , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA