Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.699
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
2.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32592681

RESUMEN

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Neurogénesis/genética , Regiones Promotoras Genéticas , Adulto , Línea Celular , Cerebro/citología , Cerebro/crecimiento & desarrollo , Cerebro/metabolismo , Cromatina/ultraestructura , Mapeo Cromosómico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
4.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386704

RESUMEN

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte de Proteínas , Transporte Biológico , Proteolisis , Osmorregulación , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas de Arabidopsis/genética
5.
Plant Cell ; 35(8): 2910-2928, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37195876

RESUMEN

The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37733739

RESUMEN

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Asunto(s)
Inhibición Psicológica , Neuralgia , Humanos , Microscopía por Crioelectrón , Unión Competitiva
7.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

8.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416582

RESUMEN

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

9.
Plant J ; 113(6): 1122-1145, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582168

RESUMEN

High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
10.
Anal Chem ; 96(1): 347-354, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153415

RESUMEN

Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.


Asunto(s)
Tamaño de la Partícula , Humanos , Microesferas , Células K562 , Simulación por Computador
11.
BMC Med ; 22(1): 176, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664766

RESUMEN

BACKGROUND: There is an urgent unmet need for effective initial treatment for acute graft-versus-host disease (aGVHD) adding to the standard first-line therapy with corticosteroids after allogeneic haematopoietic stem cell transplantation (allo-HSCT). METHODS: We performed a multicentre, open-label, randomized, phase 3 study. Eligible patients (aged 15 years or older, had received allo-HSCT for a haematological malignancy, developed aGVHD, and received no previous therapies for aGVHD) were randomly assigned (1:1) to receive either 5 mg/m2 MTX on Days 1, 3, or 8 and then combined with corticosteroids or corticosteroids alone weekly. RESULTS: The primary endpoint was the overall response rate (ORR) on Day 10. A total of 157 patients were randomly assigned to receive either MTX plus corticosteroids (n = 78; MTX group) or corticosteroids alone (n = 79; control group). The Day 10 ORR was 97% for the MTX group and 81% for the control group (p = .005). Among patients with mild aGVHD, the Day 10 ORR was 100% for the MTX group and 86% for the control group (p = .001). The 1-year estimated failure-free survival was 69% for the MTX group and 41% for the control group (p = .002). There were no differences in treatment-related adverse events between the two groups. CONCLUSIONS: In conclusion, mini-dose MTX combined with corticosteroids can significantly improve the ORR in patients with aGVHD and is well tolerated, although it did not achieve the prespecified 20% improvement with the addition of MTX. TRIAL REGISTRATION: The trial was registered with clinicaltrials.gov (NCT04960644).


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Metotrexato , Metilprednisolona , Humanos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Femenino , Masculino , Metotrexato/administración & dosificación , Metotrexato/uso terapéutico , Persona de Mediana Edad , Adulto , Metilprednisolona/uso terapéutico , Metilprednisolona/administración & dosificación , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto Joven , Resultado del Tratamiento , Quimioterapia Combinada , Anciano , Adolescente , Enfermedad Aguda
12.
Plant Physiol ; 193(2): 1381-1394, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37437116

RESUMEN

Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.


Asunto(s)
Oryza , Oryza/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fotosíntesis/genética , Plantas/metabolismo , Dióxido de Carbono/metabolismo
13.
NMR Biomed ; 37(4): e5077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38057971

RESUMEN

Ultralow-field magnetic resonance imaging (ULF-MRI) has broad application prospects because of its portable hardware system and low cost. However, the low B0 magnitude of ULF-MRI results in a reduced signal-to-noise ratio in qualitative images compared with that of commercial high-field MRI, which can affect the visibility and delineation of tissues and lesions. In this work, a magnetic resonance fingerprinting (MRF) approach is applied to a homemade 50-mT ULF-MRI scanner to achieve efficient quantitative brain imaging, which is an original and promising disease-diagnosis approach for portable MRI systems. An inversion recovery fast imaging with steady-state precession-based sequence is utilized for MRF through Cartesian acquisition. A microdictionary analysis method is proposed to select the optimal repetition time and flip angle variation schedule and ensure the best possible tissue discriminative ability of MRF. The T1 and T2 relaxation properties and the B1 + distribution are considered for estimation, and the results are compared with those of gold standard (GS) quantitative imaging or qualitative imaging methods. The phantom experiment indicates that the quantitative values obtained by schedule-optimized MRF show good agreement, and the bias from the GS results is acceptable. The in vivo experiment shows that the relaxation times of white and gray matter estimated by MRF are slightly lower than the reference data, and the relaxation times of lipid are within the range of the reference data. Compared with qualitative MRI under ULF, MRF can intuitively reflect various items of brain tissue information in a single scan, so it is a valuable addition to point-of-care imaging approaches.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
14.
Cancer Cell Int ; 24(1): 47, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291427

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are significant contributors to various human malignancies. The aberrant expression of lncRNA LINC00894 has been reported in various human malignancies. We aimed to illustrate the role of LINC00894 and its underlying mechanism in the development of papillary thyroid carcinoma (PTC). METHODS: We performed bioinformatics analysis of differentially expressed RNAs from TCGA and GEO datasets and selected the target lncRNA LINC00894. SRAMP analysis revealed abundant M6A modification sites in LINC00894. Further analysis of StarBase, GEPIA, and TCGA datasets was performed to identify the related differentially expressed genes METTL3. Colony formation and CCK-8 assays confirmed the relationship between LINC00894, METTL3, and the proliferative capacity of PTC cells. The analysis of AnnoLnc2, Starbase datasets, and meRIP-PCR and qRT‒PCR experiments confirmed the influence of METTL3-mediated m6A modification on LINC00894. The study employed KEGG enrichment analysis as well as Western blotting to investigate the impact of LINC00894 on the expression of proteins related to the Hippo signalling pathway. RESULTS: LINC00894 downregulation was detected in PTC tissues and cells and was even further downregulated in PTC with lymphatic metastasis. LINC00894 inhibits the lymphangiogenesis of vascular endothelial cells and the proliferation of cancer cells. METTL3 enhances PTC progression by upregulating LINC00894 by enhancing LINC00894 mRNA stability through the m6A-YTHDC2-dependent pathway. LINC00894 may inhibit PTC malignant phenotypes through the Hippo signalling pathway. CONCLUSION: The METTL3-YTHDC2 axis stabilizes LINC00894 mRNA in an m6A-dependent manner and subsequently inhibits tumour malignancy through the Hippo signalling pathway.

15.
Nat Chem Biol ; 18(8): 831-840, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35637350

RESUMEN

Given the promising clinical value of allosteric modulators of G protein-coupled-receptors (GPCRs), mechanistic understanding of how these modulators alter GPCR function is of significance. Here, we report the crystallographic and cryo-electron microscopy structures of the cannabinoid receptor CB1 bound to the positive allosteric modulator (PAM) ZCZ011. These structures show that ZCZ011 binds to an extrahelical site in the transmembrane 2 (TM2)-TM3-TM4 surface. Through (un)biased molecular dynamics simulations and mutagenesis experiments, we show that TM2 rearrangement is critical for the propagation of allosteric signals. ZCZ011 exerts a PAM effect by promoting TM2 rearrangement in favor of receptor activation and increasing the population of receptors that adopt an active conformation. In contrast, ORG27569, a negative allosteric modulator (NAM) of CB1, also binds to the TM2-TM3-TM4 surface and exerts a NAM effect by impeding the TM2 rearrangement. Our findings fill a gap in the understanding of CB1 allosteric regulation and could guide the rational design of CB1 allosteric modulators.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Cannabinoide CB1 , Regulación Alostérica , Sitio Alostérico , Microscopía por Crioelectrón , Receptor Cannabinoide CB1/genética
16.
Biotechnol Bioeng ; 121(7): 2163-2174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38595326

RESUMEN

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.


Asunto(s)
Antígenos Bacterianos , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Reactores Biológicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Solubilidad
17.
J Org Chem ; 89(7): 4484-4495, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38470436

RESUMEN

Nickel-catalyzed carbonylation of alkenes is a stereoselective and regioselective method for the synthesis of amide compounds. Theoretical predictions with density functional theory calculations revealed the mechanism and origin of stereoselectivity and regioselectivity for the nickel-catalyzed carbonylation of norbornene. The carbonylation reaction proceeds through oxidative addition, migration insertion of alkenes, and subsequent reduction elimination to afford cis-carbonylation product. The C-N bond activation of amides is unfavorable because the oxidative addition ability of the C-C bond is stronger than that of the C-N bond. The determining step of stereoselectivity is the migratory insertion of the strained olefin. The structural analysis shows that steroselectivity is controlled by the steric hindrance of methyl groups to olefins and substituents to IMes in ligands.

18.
Inorg Chem ; 63(19): 8899-8907, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695311

RESUMEN

Given the escalating significance of near-infrared (NIR) spectroscopy across industries, agriculture, and various domains, there is an imminent need to address the development of a novel generation of intelligent NIR light sources. Here, a series of Cr3+-doped BaLaMgNbO6 (BLMN) ultrabroadband NIR phosphor with a coverage range of 650-1300 nm were developed. The emission peak locates at 830 nm with a full width at half maximum of 210 nm. This ultrabroadband emission originates from the 4T2→4A2 transition of Cr3+ and the simultaneous occupation of [MgO6] and [NbO6] octahedral sites confirmed by low photoluminescence spectra (77-250 K), time-resolved photoluminescence spectra, and electron paramagnetic resonance spectra. The fluxing strategy improves the luminescence intensity and thermal stability of BLMN:0.02Cr3+ phosphors. The internal quantum efficiency (IQE) is 51%, external quantum efficiency (EQE) can reach 33%, and thermal stability can be maintained at 60%@100 °C. Finally, we successfully demonstrated the application of BLMN:Cr3+ ultrabroadband in the qualitative analysis of organic matter and food freshness detection.

19.
J Immunol ; 208(2): 321-327, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911771

RESUMEN

Previous studies have demonstrated that 8-hydroxydeoxyguanosine (8-OHdG) exerted key roles in various pulmonary diseases, but the evidence for its role in community-acquired pneumonia (CAP) was lacking. The goal of this research was to evaluate the correlations of serum 8-OHdG with the severity and prognosis among patients with CAP through a prospective cohort study. A total of 239 patients with CAP and 239 healthy participants were enrolled. Fasting blood samples were collected. 8-OHdG and inflammatory cytokines were measured by ELISA. On admission, serum 8-OHdG was significantly increased in patients with CAP compared with control subjects. Besides, serum 8-OHdG was incrementally increased in line with CAP severity scores. Pearson correlative analysis found that serum 8-OHdG was correlated with clinical characteristics and inflammatory cytokines in patients with CAP. Linear and logistic regression analysis showed that serum 8-OHdG was positively associated with CAP severity scores. Furthermore, the prognostic outcomes were tracked. Higher serum 8-OHdG on admission increased the risks for intensive care unit admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stay among patients with CAP. Serum 8-OHdG combination with confusion, respiratory rate, blood pressure, and age ≥65 y or pneumonia severity index had stronger predictive powers for death than single 8-OHdG, CAP severity scores, or several inflammatory cytokines in patients with CAP. These results indicated that serum 8-OHdG is positively associated with the severity and poor prognosis in patients with CAP, demonstrating that 8-OHdG may be involved in the pathophysiology process of CAP.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/sangre , Infecciones Comunitarias Adquiridas/patología , Neumonía/sangre , Neumonía/mortalidad , Índice de Severidad de la Enfermedad , Anciano , Biomarcadores/sangre , Infecciones Comunitarias Adquiridas/sangre , Cuidados Críticos/estadística & datos numéricos , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Neumonía/patología , Pronóstico , Estudios Prospectivos , Respiración Artificial/estadística & datos numéricos
20.
J Immunol ; 208(2): 492-500, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937746

RESUMEN

The interaction of inhibitory receptors with self-MHC class I (MHC-I) molecules is responsible for NK cell education. The intensity of DNAM-1 expression correlates with NK cell education. However, whether DNAM-1 expression directly influences the functional competence of NK cells via the KIR/MHC-I interaction remains unclear. Based on allogeneic haploidentical hematopoietic stem cell transplantation, we investigated the intensity of DNAM-1 expression on reconstituted NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after hematopoietic stem cell transplantation. The reconstituted NK cells educated by donor and recipient HLA molecules showed the highest DNAM-1 expression, whereas DNAM-1 expression on educated NK cells with only recipient HLA molecules was higher than that on educated NK cells with only donor HLA molecules, indicating that NK cells with donor or recipient HLA molecules regulate DNAM-1 expression and thereby affect NK cell education. Additionally, the effects of recipient cells on NK cell education were greater than those of donor cells. However, only when the DNAM-1, NKP30, and NKG2D receptors were blocked simultaneously was the function of educated and uneducated NK cells similar. Therefore, activating receptors may collaborate with DNAM-1 to induce educated NK cell hyperresponsiveness. Our data, based on in vitro and in vivo studies, demonstrate that the functional competence of NK cells via the KIR/MHC-I interaction correlates with DNAM-1 expression in human NK cells.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Receptores KIR/inmunología , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Estudios de Casos y Controles , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucemia Linfoide/terapia , Leucemia Mieloide/terapia , Síndromes Mielodisplásicos/terapia , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA