Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414625, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254212

RESUMEN

A high-efficiency PtZnCd nanozyme was screened with density functional theory (DFT) and unique d-orbital coupling features for sensitive enrichment and real-time analysis of CO-releasing molecule-3 (CORM-3). Multi-catalytic sites in the nanozyme showed a high reactivity of up to 72.89 min-1 for peroxidase-like enzymes (POD) reaction, which was 2.2, 4.07, and 14.67 times higher than that of PtZn (32.67 min-1), PtCd (17.89 min-1), and Pt (4.97 min-1), respectively. Normalization of the catalytic sites showed that the catalytic capacity of the active site in PtZnCd was 2.962 U µmol-1, which was four times higher than that of pure Pt site (0.733 U µmol-1). DFT calculations showed that improved d-orbital coupling between different metals reduces the position of the center of the shifted whole d-band relative to the Fermi energy level, thereby increasing the contribution of the sites to the electron transfer from the active center, accompanied with enhanced substrate adsorption and intermediate conversion in the catalytic process. The potential adsorption principle and color development mechanism of CORM-3 on PtZnCd were determined, and the practical application in drug metabolism was validated in vitro, in zebrafish and mice as a model, demonstrating that transition metal doping effectively engineers high-performance nanozymes and optimizes artificial enzymes.

2.
Nanotechnology ; 33(15)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34915458

RESUMEN

Magnetically actuated micro/nanorobots are typical micro- and nanoscale artificial devices with favorable attributes of quick response, remote and contactless control, harmless human-machine interaction and high economic efficiency. Under external magnetic actuation strategies, they are capable of achieving elaborate manipulation and navigation in extreme biomedical environments. This review focuses on state-of-the-art progresses in design strategies, fabrication techniques and applications of magnetically actuated micro/nanorobots. Firstly, recent advances of various robot designs, including helical robots, surface walkers, ciliary robots, scaffold robots and biohybrid robots, are discussed separately. Secondly, the main progresses of common fabrication techniques are respectively introduced, and application achievements on these robots in targeted drug delivery, minimally invasive surgery and cell manipulation are also presented. Finally, a short summary is made, and the current challenges and future work for magnetically actuated micro/nanorobots are discussed.

3.
Nanotechnology ; 33(40)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35617936

RESUMEN

Flexible force sensors are of great interest in the fields of healthcare, physiological signals, and aircraft smart skin applications because of their compatibility with curved surfaces. However, the simultaneous detection of multidirectional forces remains an engineering challenge, despite the great progress made in recent years. Herein, we present the development of a flexible capacitive force sensor capable of efficiently distinguishing normal and sliding shear forces. A two-layer electrospun polyimide/graphene oxide (PI/GO) nanofiber membrane is used as the dielectric layer, which is sandwiched between one top electrode and four symmetrically distributed bottom electrodes. This composite membrane has an improved dielectric constant, a reduced friction coefficient, and good compressibility, leading to superior performance that includes high sensitivity over a wide operational range with measured results of 3 MPa-1for 0-242 kPa (0-2.2 N) and 0.92 MPa-1for 242-550 kPa (2.2-5 N) in the normal direction; and better than 1 N-1for 0-3 N in thex- andy-axis directions. The system also has a low detection limit of 10 Pa, fast response and recovery times of 39 ms and 13 ms, respectively, a good cyclic stability of 10,000 cycles at a pressure of 176 kPa, and promising potential for use in high-temperature environments (200 °C). Moreover, a prototype 4 × 4 sensor array has been fabricated and successfully used in a robotic system to grasp objects and operate a wireless toy car. As such, the proposed system could offer superior capabilities in simultaneous multidirectional force sensing for applications such as intelligent robots, human-machine interaction, and smart skin.


Asunto(s)
Grafito , Nanofibras , Humanos , Fenómenos Mecánicos , Tacto
4.
Sensors (Basel) ; 20(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085623

RESUMEN

Recent advances in myoelectric controlled techniques have made the surface electromyogram (sEMG)-based sensing armband a promising candidate for acquiring bioelectric signals in a simple and convenient way. However, inevitable electrode shift as a non-negligible defect commonly causes a trained classifier requiring continuous recalibrations. In this study, a novel hand gesture prediction is firstly proposed; it is robust to electrode shift with arbitrary angle. Unlike real-time recognition which outputs target gestures only after the termination of hand motions, our proposed advanced prediction can provide the same results, even before the completion of signal collection. Moreover, by combining interpolated peak location and preset synchronous gesture, the developed simplified rapid electrode shift detection and correction at random rather than previous fixed angles are realized. Experimental results demonstrate that it is possible to achieve both electrode shift detection with high precision and gesture prediction with high accuracy. This study provides a new insight into electrode shift robustness which brings gesture prediction a step closer to practical applications.

5.
Langmuir ; 34(45): 13788-13793, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30354156

RESUMEN

Gap electrospinning is a facile technique to produce aligned nanofibers useful for many applications, but its potential has not yet been fully exploited in nature, leading to the fiber length still limited to several tens of centimeters at present. In this work, we report a breakthrough in the production of well-aligned nanofibers with record length and efficiency. Using a suitable poly(vinylidene fluoride) solution and a pair of parallel plates that are substrate-free and negatively connected, we demonstrate the ease of this technique to prepare length-controllable aligned fibers in a wide range (≤125 cm). Because of the crucial roles of both the jet whipping instability that continuously drives the jet to span across the static plates and the negative voltage on the plates that effectively attracts the positively charged jet, the jet can be made to move back and forth over the superlarge gap to form ultralong aligned nanofibers. By introducing a projection method, we also redefine fiber alignment in a broader sense. This work is believed to provide a new insight into the nature of gap electrospinning, which will greatly expand the versatility of this technique to create devices for a myriad of applications.

6.
Macromol Biosci ; 24(4): e2300465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111343

RESUMEN

Combination therapy through colon-targeted oral delivery of multiple drugs presents a promising approach for effectively treating ulcerative colitis (UC). However, the codelivery of drugs with diverse physicochemical properties in a single formulation remains a formidable challenge. Here, microcapsules are designed based on hydroxyethyl starch-curcumin (HES─CUR) conjugates to enable the simultaneous delivery of hydrophobic dexamethasone acetate (DA) and hydrophilic cefazolin sodium (CS), yielding multiple drug-loaded microcapsules (CS/DA-loaded HES─CUR microcapsules, CDHC-MCs) tailored for colon-targeted therapy of UC. Thorough characterization confirms the successful synthesis and exceptional biocompatibility of CDHC-MCs. Biodistribution studies demonstrate that the microcapsules exhibit an impressive inflammatory targeting effect, accumulating preferentially in inflamed colons. In vivo experiments employing a dextran-sulfate-sodium-induced UC mouse model reveal that CDHC-MCs not only arrest UC progression but also facilitate the restoration of colon length and alleviate inflammation-related splenomegaly. These findings highlight the potential of colon-targeted delivery of multiple drugs within a single formulation as a promising strategy to enhance UC treatment, and the CDHC-MCs developed in this study hold great potential in developing novel oral formulations for advanced UC therapy.


Asunto(s)
Colitis Ulcerosa , Curcumina , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Curcumina/química , Distribución Tisular , Cápsulas/metabolismo , Colon/metabolismo , Almidón/farmacología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad
7.
Int J Biol Macromol ; 266(Pt 1): 131107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527677

RESUMEN

Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.


Asunto(s)
Antiinflamatorios , Colitis Ulcerosa , Curcumina , Microbioma Gastrointestinal , Derivados de Hidroxietil Almidón , Microesferas , Estrés Oxidativo , Curcumina/farmacología , Curcumina/química , Animales , Colitis Ulcerosa/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Derivados de Hidroxietil Almidón/química , Derivados de Hidroxietil Almidón/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/microbiología , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Masculino
8.
Adv Mater ; : e2407106, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380392

RESUMEN

Efficient ion transport and enriched responsive modals via modulating electrochemical properties of conductivity and capacitance are essential for soft electro-ionic actuators. However, cost-effective and straightforward approaches to achieve expedited fabrication of active electrode materials capable of multimodal-responsiveness remain limited. Herein, this work reports the one-step ultrafast laser direct patterning method, to readily synthesize electro- and magneto-active electrode material, derived from the unique cobalt-phosphorus co-doped core-shell heterostructures within 3D graphene frameworks, for fulfilling the dual-mode responsive electro-ionic actuators. The designed nanofiber-structured heterointerfaces across electrodes and electrolytes further promote highly efficient electron/ion transfer. The developed soft actuator exhibits superior actuation performance of peak-to-peak displacement to 13.08 mm under an ultra-low ±0.5 V, with doubled direct current deflection under 200 mT at 1 V, an ultrafast response of 1.38 s and long-term stability (>90% retention for ≈106 000 cycles), even detectable bending to ≈280 µm under exceptional ±10 mV. The promising demonstration of promoting differentiation and proliferation of stem cells under mechanical strain and electrical stimuli, sheds more light as well on the possibility of facilitating biomedical soft robotics with ultrahigh actuation performance.

9.
ACS Sens ; 8(8): 3127-3135, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37471516

RESUMEN

Flexible pressure sensors with high-performance show broad application prospects in health monitoring, wearable electronic devices, intelligent robot sensing, and other fields. Although flexible pressure sensors have made significant progress in sensitivity and detection range, most of them still exhibit strong nonlinearity, which leads to significant troubles in signal acquisition and thus limits their popularity in practical applications. It remains a serious challenge for the flexible pressure sensor to achieve high linearity while maintaining high sensitivity. Herein, a doped sensing membrane with a uniformly distributed Gaussian-curve-shaped micropattern array was developed using the micro-electromechanical systems (MEMS) process, and a flexible sensor structure with the doped film as the core was designed and constructed. The prototype sensor has a high sensitivity of 1.77 kPa-1 and a linearity of 0.99 in the full detection range of 20 Pa to 30 kPa. In addition, its excellent performance also includes fast response/recovery times (∼25/50 ms) and long-term endurance (>10,000 cycles at 15 kPa). The prototype sensor has been successfully demonstrated in human pulse monitoring, speech recognition, and gesture recognition. The 2 × 6 sensor array can detect the spatial pressure distribution. Thus, such a microstructure shape design will open a new way to fabricate a high-linearity pressure sensor for potential applications in health monitoring, human-machine interaction, etc.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico
10.
ACS Appl Mater Interfaces ; 15(3): 4713-4723, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36623166

RESUMEN

Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.

11.
Microsyst Nanoeng ; 9: 5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36620391

RESUMEN

The tactile pressure sensor is of great significance in flexible electronics, but sensitivity customization over the required working range with high linearity still remains a critical challenge. Despite numerous efforts to achieve high sensitivity and a wide working range, most sensitive microstructures tend to be obtained only by inverting naturally existing templates without rational design based on fundamental contact principles or models for piezoresistive pressure sensors. Here, a positive design strategy with a hyperelastic model and a Hertzian contact model for comparison was proposed to develop a flexible pressure sensor with highly customizable linear sensitivity and linearity, in which the microstructure distribution was precalculated according to the desired requirement prior to fabrication. As a proof of concept, three flexible pressure sensors exhibited sensitivities of 0.7, 1.0, and 1.3 kPa- 1 over a linear region of up to 200 kPa, with a low sensitivity error (<5%) and high linearity (~0.99), as expected. Based on the superior electromechanical performance of these sensors, potential applications in physiological signal recognition are demonstrated as well, and such a strategy could shed more light on demand-oriented scenarios, including designable working ranges and linear sensitivity for next-generation wearable devices.

12.
Theor Appl Genet ; 119(1): 85-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19407986

RESUMEN

The breeding of japonica varieties with erect-pose panicle (EP) has recently progressed in the northern part of China, because these varieties exhibit a far higher grain yield than the varieties with normal-pose panicle (NP). A genetic analysis using the F(2) population from the cross between Liaojing5, the first japonica EP variety in China, and the Japanese japonica NP variety Toyonishiki revealed that EP is governed by a single dominant gene EP. Based on previous studies, map-based cloning of EP locus was conducted using Liaojing5, Toyonishiki, their F(2) population, and a pair of near-isogenic lines for EP locus (ZF14 and WF14) derived from the cross between the two varieties; consequently, the STS marker H90 was found to completely cosegregate with panicle pose. The H90 is located in the coding sequence AK101247 in the database, and the AK101247 of Liaojing5 has a 12 bp sequence in exon 5 replaced with a 637 bp sequence of its wild type allele. It was therefore considered that the AK101247 encodes the protein of the wild type allele at EP locus, and that the sequence substitution in exon 5 of Liaojing5 is crucial for expression of the EP phenotype. The effects of EP gene on agronomic traits were investigated using two pairs of near-isogenic lines (ZF6 vs. WF6 and ZF14 vs. WF14) derived from the cross between the two varieties. Experimental results showed that EP gene markedly enhanced grain yield, chiefly by increasing number of secondary branches and number of grains on the secondary branch. EP gene also produced a remarkable increase in grain density.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Oryza/genética , Estructuras de las Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Productos Agrícolas/crecimiento & desarrollo , Genotipo , Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Fenotipo , Estructuras de las Plantas/anatomía & histología , Polimorfismo Genético , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA