Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(1): e2304720, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649208

RESUMEN

The development of nanomaterials with high photothermal conversion efficiency has been a hot issue. In this work, a novel photothermal nanomaterial is synthesized using Prussian blue nanocubes (PBNCs) as the photothermal active substance and covalent organic framework (COF) as the substrate. The as-prepared COF@PBNCs show a high photothermal conversion efficiency of 59.1%, significantly higher than that of pure PBNCs (32.5%). A new circuit path is generated with the combination of COF, which prevents the direct combination of thermal electrons and holes, as well as enhances the nonradiation transition of PBNCs. Besides, the imine groups on COF as the coordination and reduction agent allow the in situ growth of PBNCs, and the dense micropores of COF as the ideal heat conduction channels can also be the potential factors for the enhanced photothermal property. The photothermal property of COF@PBNCs is further used in the construction of immunosensor for the detection of furosemide (FUR). With the help of handheld thermal imager, the concentration of FUR can be easily read, thus shedding a new light in the construction of visual sensor for simple and low-cost point-of-care testing.

2.
Crit Rev Food Sci Nutr ; : 1-11, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356229

RESUMEN

Immunoassay based on the antibodies specific for targets has advantages of high sensitivity, simplicity and low cost, therefore it has received more attention in recent years, especially for the rapid detection of small molecule chemicals present in foods, diagnostics and environments. However, limited by low molecular weight and only one antigenic determinant existed, immunoassays for these small molecule chemicals, namely hapten substances, were commonly performed in a competitive immunoassay format, whose sensitivities were obviously lower than the sandwich enzyme-linked immunosorbent assay generally adaptable for the protein targets. In order to break through the bottleneck of detection format, researchers have designed and established several novel noncompetitive immunoassays for the haptens in the past few years. In this review, we focused on the four representative types of noncompetitive immunoassay formats and described their characteristics and applications in rapid detection of small molecules. Meanwhile, a systematic discussion on the current technologies challenges and the possible solutions were also summarized. This review aims to provide an updated overview of the current state-of-the-art in noncompetitive immunoassay for small molecules, and inspire the development of novel designs for small molecule detection.

3.
Anal Chem ; 95(37): 14135-14142, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37669908

RESUMEN

Cereulide, the exotoxin of emetic Bacillus cereus, has garnered considerable attention due to its capacity to produce foodborne poisonings and great chemical stability. Herein, a G-quadruplex-hemin DNAzyme-based biosensor was developed to detect cereulide in the homogeneous solution. Due to the special ring structure and high affinity to K+, cereulide can be attracted and intercalated into the G-quadruplex; thus, the properties of the G4 DNAzyme can be altered. The melting temperature (Tm) of the G4 DNAzyme in the presence or absence of cereulide was 58.75 and 50.10 °C, respectively, proving the intercalation of cereulide into the G4 DNAzyme. By using the polychromic fluorescence modality of CdTe quantum dots and o-phenylenediamine to assess the variation in the catalytic activity of the DNAzyme, the intercalation of cereulide had bidirectional effects in G4 DNAzyme-mediated reactions, showing that the fluorescence intensity of CdTe quantum dots displayed a linear relationship with the concentration of cereulide from 0.16 to 40 µg/mL with the limit of detection (LOD) of 0.10 µg/mL, while the fluorescence intensity of DAP exhibited a linear relationship with the concentration of cereulide from 0.02 to 40 µg/mL with the LOD of 0.01 µg/mL. It will be a perspective step of controlling cereulide as a hazardous material in food or the environment.


Asunto(s)
Compuestos de Cadmio , ADN Catalítico , Puntos Cuánticos , Telurio
4.
Anal Chem ; 95(42): 15769-15777, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37734028

RESUMEN

Inspired by the molecular crowding effect in biological systems, a novel heterogeneous quadratic amplification molecular circuit (HEQAC) was developed for sensitive bimodal miRNA profiling (HEQAC-BMP) by combining an MNAzyme-based DNA nanomachine with an entropy-driven catalytic hairpin assembly (E-CHA) autocatalytic circuit. Utilizing ferromagnetic nanomaterials as the substrate for DNA nanomachines, a biomimetic heterogeneous interface was established; thus, a localized molecular crowding system was created that can elevate the local reaction concentration and accelerate the molecular recognition process for a significant threshold signal. Simultaneously, the threshold signal undergoes further amplification by E-CHA and is transformed into a chemical signal, enabling a colorimetric-fluorescence bimodal signal readout. The HEQAC-BMP enables miRNA detection from 10 aM to 10 nM with detection limits of 3.7 aM (colorimetry) and 4.8 aM (fluorometry), respectively. Moreover, the design principle and strategy of HEQAC-BMP can be customized to address other critical viruses or diseases with life-threatening and socioeconomic impacts, enhancing healthcare outcomes for individuals.

5.
Anal Chem ; 95(44): 16366-16373, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37882488

RESUMEN

The widespread use of sulfonamide (SA) antibiotics in animal husbandry has led to residues of SAs in the environment, causing adverse effects to the ecosystem and a risk of bacterial resistance, which is a potential threat to public health. Therefore, it is highly desirable to develop simple, high-throughput methods that can detect multiple SAs simultaneously. In this study, we isolated aptamers with different specificities based on a multi-SA systematic evolution of ligands by the exponential enrichment (SELEX) strategy using a mixture of sulfadimethoxine (SDM), sulfaquinoxaline (SQX), and sulfamethoxazole (SMZ). Three aptamers were obtained, and one of them showed a similar binding to all tested SAs, with dissociation constant (Kd) ranging from 0.22 to 0.63 µM. For the other two aptamers, one is specific for SQX, and the other is specific for SDM and sulfaclozine. A label-free detection method based on the broad-specificity aptamer was developed for the simultaneous detection of six SAs, with detection of limits ranging from 0.14 to 0.71 µM in a lake water sample. The aptasensor has no binding for other broad-spectrum antibiotics such as ß-lactam antibiotics, quinolones, tetracyclines, and chloramphenicol. This work provides a promising biosensor for rapid, multiresidue, and high-throughput detection of SAs, as well as a shortcut for the preparation of different specific recognition elements required for the detection of broad-spectrum antibiotics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Animales , Antibacterianos , Aptámeros de Nucleótidos/química , Ecosistema , Sulfanilamida , Sulfadimetoxina , Sulfonamidas , Sulfaquinoxalina , Técnicas Biosensibles/métodos , Técnica SELEX de Producción de Aptámeros/métodos
6.
Anal Chem ; 95(33): 12321-12328, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37527540

RESUMEN

Photoinduced electron-transfer (PET) immunoassay based on a fluorescence site-specifically labeled nanobody, also called mini Quenchbody (Q-body), exhibits extraordinary sensitivity and saves much time in the homogeneous noncompetitive mode and is therefore regarded as a valuable method. However, limited by the efficiency of both quenching and dequenching of the fluorescence signal before and after antigen binding associated with the PET principle, not all original nanobodies can be used as candidates for mini Q-bodies. Herein, with the anti-quinalphos nanobody 11A (Nb-11A) as the model, we, for the first time, adopt a strategy by combining X-ray structural analysis with site-directed mutagenesis to design and produce a mutant Nb-R29W, and then successfully generate a mini Q-body by labeling with ATTO520 fluorescein. Based on this, a novel PET immunoassay is established, which exhibits a limit of detection of 0.007 µg/mL with a detection time of only 15 min, 25-fold improved sensitivity, and faster by 5-fold compared to the competitive immunoassay. Meanwhile, the recovery test of vegetable samples and validation by the standard ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) both demonstrated that the established PET immunoassay is a novel, sensitive, and accurate detection method for quinalphos. Ultimately, the findings of this work will provide valuable insights into the development of triggered PET fluorescence probes by using existing antibody resources.


Asunto(s)
Colorantes Fluorescentes , Espectrometría de Masas en Tándem , Cromatografía Liquida , Colorantes Fluorescentes/química , Inmunoensayo/métodos , Antígenos , Tomografía de Emisión de Positrones
7.
Anal Chem ; 95(30): 11306-11315, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37428097

RESUMEN

Nanobodies (Nbs) have great potential in immunoassays due to their exceptional physicochemical properties. With the immortal nature of Nbs and the ability to manipulate their structures using protein engineering, it will become increasingly valuable to understand what structural features of Nbs drive high stability, affinity, and selectivity. Here, we employed an anti-quinalphos Nb as a model to illustrate the structural basis of Nbs' distinctive physicochemical properties and the recognition mechanism. The results indicated that the Nb-11A-ligand complexes exhibit a "tunnel" binding mode formed by CDR1, CDR2, and FR3. The orientation and hydrophobicity of small ligands are the primary determinants of their diverse affinities to Nb-11A. In addition, the primary factors contributing to Nb-11A's limited stability at high temperatures and in organic solvents are the rearrangement of the hydrogen bonding network and the enlargement of the binding cavity. Importantly, Ala 97 and Ala 34 at the active cavity's bottom and Arg 29 and Leu 73 at its entrance play vital roles in hapten recognition, which were further confirmed by mutant Nb-F3. Thus, our findings contribute to a deeper understanding of the recognition and stability mechanisms of anti-hapten Nbs and shed new light on the rational design of novel haptens and directed evolution to produce high-performance antibodies.


Asunto(s)
Anticuerpos de Dominio Único , Haptenos
8.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724782

RESUMEN

Colloidal delivery systems are widely used in the food industry to enhance the dispersibility, stability, efficacy, or bioavailability. However, when exposed to the high temperature, delivery systems are often prone to degradation, which limits its application in thermal processing. In this paper, the effects of thermal processing on the performance of traditional protein-based or starch-based delivery systems are firstly described, including the molecular structure changes of proteins, starches or lipids, and the degradation of embedded substances. These effects are unfavorable to the application of the delivery system in thermal processing. Then, strategies of improving the heat resistance of food grade colloid delivery system and their use in frying, baking and cooking food are mainly introduced. The heat resistance of the delivery system can be improved by a variety of strategies, including the development of new heat-resistant materials, the addition of heat-resistant coatings to the surface of delivery systems, the cross-linking of proteins or starches using cross-linking agents, the design of particle structures, the use of physical means such as ultrasound, or the optimization of the ingredient formula. These strategies will help to expand the application of heat-resistant delivery systems so that they can be used in real thermal processing.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486163

RESUMEN

Polyphenols have a variety of physiological activities, including antioxidant, antimicrobial, and anti-inflammatory properties. However, their applications are often limited because due to the instability of polyphenols. Encapsulation technologies can be employed to overcome these problems and increase the utilization of polyphenols. In this article, the utilization of protein-based nanoparticles for encapsulating polyphenols is reviewed due to their good biocompatibility, biodegradability, and functional attributes. Initially, the various kinds of animal and plant proteins available for forming protein nanoparticles are discussed, as well as the fabrication methods that can be used to assemble these nanoparticles. The molecular interaction mechanisms between proteins and polyphenols are then summarized. Applications of protein-based nanoparticles for encapsulating polyphenols are then discussed, including as nutrient delivery systems, in food packaging materials, and in the creation of functional foods. Finally, areas where further research is need on the development, characterization, and application of protein-based polyphenol-loaded nanoparticles are highlighted.

10.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485927

RESUMEN

Anthocyanins have attracted a lot of attention in the fields of natural pigments, food packaging, and functional foods due to their color, antioxidant, and nutraceutical properties. However, the poor chemical stability and low bioavailability of anthocyanins currently limit their application in the food industry. Various methods can be used to modify the structure of anthocyanins and thus improve their stability and bioavailability characteristics under food processing, storage, and gastrointestinal conditions. This paper aims to review in vitro modification methods for altering the molecular structure of anthocyanins, as well as their resulting improved properties such as color, stability, solubility, and antioxidant properties, and functional applications as pigments, sensors and functional foods. In industrial production, by mixing co-pigments with anthocyanins in food systems, the color and stability of anthocyanins can be improved by using non-covalent co-pigmentation. By acylation of fatty acids and aromatic acids with anthocyanins before incorporation into food systems, the surface activity of anthocyanins can be activated and their antioxidant and bioactivity can be improved. Various other chemical modification methods, such as methylation, glycosylation, and the formation of pyranoanthocyanins, can also be utilized to tailor the molecular properties of anthocyanins expanding their range of applications in the food industry.

11.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36908227

RESUMEN

Starch is a natural, abundant, renewable and biodegradable plant-based polymer that exhibits a variety of functional properties, including the ability to thicken or gel solutions, form films and coatings, and act as encapsulation and delivery vehicles. In this review, we first describe the structure of starch molecules and discuss the mechanisms of their interactions with guest molecules. Then, the effects of starch-guest complexes on gelatinization, retrogradation, rheology and digestion of starch are discussed. Finally, the potential applications of starch-guest complexes in the food industry are highlighted. Starch-guest complexes are formed due to physical forces, especially hydrophobic interactions between non-polar guest molecules and the hydrophobic interiors of amylose helices, as well as hydrogen bonds between some guest molecules and starch. Gelatinization, retrogradation, rheology and digestion of starch-based materials are influenced by complex formation, which has important implications for the utilization of starch as a functional and nutritional ingredient in food products. Controlling these interactions can be used to create novel starch-based food materials with specific functions, such as texture modifiers, delivery systems, edible coatings and films, fat substitutes and blood glucose modulators.

12.
Compr Rev Food Sci Food Saf ; 22(3): 2310-2345, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37010776

RESUMEN

Frying is one of the most common methods of preparing foods. However, it may lead to the formation of potentially hazardous substances, such as acrylamide, heterocyclic amines, trans fatty acids, advanced glycation end products, hydroxymethyl furfural and polycyclic aromatic hydrocarbons, and adversely alter the desirable sensory attributes of foods, thereby reducing the safety and quality of fried foods. Currently, the formation of toxic substances is usually reduced by pretreatment of the raw materials, optimization of process parameters, and the use of coatings. However, many of these strategies are not highly effective at inhibiting the formation of these undesirable reaction products. Plant extracts can be used for this purpose because of their abundance, safety, and beneficial functional attributes. In this article, we focus on the potential of using plant extracts to inhibit the formation of hazardous substances, so as to improve the safety of fried food. In addition, we also summarized the effects of plant extracts, which inhibit the production of hazardous substances, on food sensory aspects (flavor, color, texture, and taste). Finally, we highlight areas where further research is required.


Asunto(s)
Culinaria , Alimentos , Manipulación de Alimentos , Sustancias Peligrosas , Extractos Vegetales
13.
Crit Rev Food Sci Nutr ; 62(27): 7413-7426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34047213

RESUMEN

Development of personal glucose meters (PGMs) for blood glucose monitoring and management by the diabetic patients has been a long history since its first invention in 1968 and commercial application in 1975. The main reasons for its wide acceptance and popularity can be attributed mainly to the easy operation, test-to-result model, low cost, and small volume of sample required for blood glucose concentration test. During past decades, advances in analytical techniques have repurposed the use of PGMs into a general point-of-care testing platform for a variety of non-glucose targets, especially the food hazards. In this review, we summarized the recent published research using PGMs to detect the food safety hazards of mycotoxins, illegal additives, pathogen bacteria, and pesticide and veterinary drug residues detection with PGMs. The progress on PGM-based detection achieved in food safety have been carefully compared and analyzed. Furthermore, the current bottlenecks and challenges for practical applications of PGM for hazards detection in food safety have also been proposed.


Asunto(s)
Micotoxinas , Plaguicidas , Drogas Veterinarias , Glucemia , Automonitorización de la Glucosa Sanguínea/métodos , Inocuidad de los Alimentos , Glucosa , Humanos , Plaguicidas/análisis
14.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997260

RESUMEN

Three-dimensional (3D) printing has attracted more attention in food industry because of its potential advantages, including the ability to create customized products according to individual's sensory or nutritional requirements. However, the production of high-quality 3D printed foods requires the availability of edible bio-inks with the required physicochemical and sensory attributes. Starch, as one of the important sources of dietary energy, is widely used in food processing and is considered as one kind of versatile polymers. It is not only because starch has low prices and abundant sources, but also because desirable modified starch can be obtained by altering its physicochemical properties through physical, chemical and enzymatic methods. This article focuses on the utilization of starch as materials to create food-grade bio-inks. Initially, several kinds of commonly used 3D printers are discussed. The factors affecting the printing quality of starch-based materials and improvement methods are then reviewed, as well as areas where future researches are required. The applications of 3D printed starch-based materials in food industry are also introduced. Overall, starch appears to be one kind of useful substances for creating edible bio-inks that can be utilized within 3D food printing applications to create a wide variety of food products.

15.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178259

RESUMEN

Nanotechnology is being used to create innovative food packaging systems that can inhibit the oxidation of foods, thereby improving their quality, safety, and shelf life. These nano-enabled antioxidant packaging materials may therefore increase the healthiness and sustainability of the food supply chain. Recent progress in the application of nanotechnology to create antioxidant packaging materials is reviewed in this paper. The utilization of nanoparticles, nanofibers, nanocrystals, and nanoemulsions to incorporate antioxidants into these packaging materials is highlighted. The application of nano-enabled antioxidant packaging materials to preserve meat, seafood, fruit, vegetable, and other foods is then discussed. Finally, future directions and challenges in the development of this kind of active packaging material are highlighted to stimulate new areas of future research. Nanotechnology has already been used to create antioxidant packaging materials that inhibit oxidative deterioration reactions in foods, thereby prolonging their shelf life and reducing food waste. However, the safety, cost, efficacy, and scale-up of this technology still needs to be established before it will be commercially viable for many applications.

16.
Mikrochim Acta ; 189(8): 312, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920920

RESUMEN

Due to the highly similar genetic background, it is difficult to distinguish Bacillus cereus (B. cereus) with other members of B. cereus group. Herein, an antibody-based colorimetric immunoassay using Cu-doped CeO2 nanospheres as peroxidase mimics was developed for the detection of B. cereus in food. First, monoclonal antibodies (mAbs) and polyclonal antibody (pAb) with good specificity to B. cereus were prepared and characterized. Second, the regular-shaped hollow Cu/CeO2 nanospheres with highly catalytic activity and biocompatibility were synthesized as mimic nanozymes to capture secondary antibody. Finally, a sandwich colorimetric immunoassay for the specific and sensitive detection of B. cereus was developed, showing linear detection range from 3.2 × 102 to 1 × 105 CFU/mL and a limit detection of 1.7 × 102 CFU/mL. The developed immunoassay holds great potential as an effective tool for detecting B. cereus in food poisoning.


Asunto(s)
Bacillus cereus , Nanosferas , Anticuerpos Monoclonales , Colorimetría , Inmunoensayo
17.
Food Control ; 1362022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35989708

RESUMEN

The accurate analysis of chemical isomers plays an important role in the study of their different toxic effects and targeted detection of pollutant isomers in foods. The Alternaria mycotoxins tenuazonic acid (TeA) and iso-tenuazonic acid (ITeA) are two isomer mycotoxins with the lack of single analysis methods due to the similar structures. Antibody-based immunoassays exhibit high sensitivity and superior application in isomer-specific determination. Previously, various kinds of antibodies for TeA have been prepared in our group. Herein, highly specific nanobodies (Nbs) against ITeA mycotoxin were selected from immune nanobody phage display library, and one of Nbs, namely Nb(B3G3) exhibited excellent affinity, thermal stability as well as organic solvent tolerance. By molecular simulation and docking technology, it was found that stronger interaction between Nb(B3G3) and ITeA lead to higher affinity than that for its isomer TeA. Furthermore, a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) was established with a limit of detection (LOD) of 0.09 ng/mL for ITeA mycotoxin. The recovery rate of ITeA in spiked samples was analyzed with 84.8%-89.5% for rice, 78.3%-96.3% for flour, and 79.5%-90.7% for bread. A conventional LC-MS/MS method was used to evaluate the accuracy of this proposed icELISA, which showed a satisfactory consistent correlation. Since the convenient strategy for nanobody generation by phage display technology, this study provide new biorecognition elements and sensitive immunoassay for analysis of ITeA in foods.

18.
Compr Rev Food Sci Food Saf ; 21(2): 1627-1656, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35181985

RESUMEN

Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.


Asunto(s)
Bioensayo , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Inmunoensayo , Espectrometría Raman
19.
Compr Rev Food Sci Food Saf ; 21(3): 2455-2488, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35347871

RESUMEN

Food fraud is currently a growing global concern with far-reaching consequences. Food authenticity attributes, including biological identity, geographical origin, agricultural production, and processing technology, are susceptible to food fraud. Metabolic markers and their corresponding authentication methods are considered as a promising choice for food authentication. However, few metabolic markers were available to develop robust analytical methods for food authentication in routine control. Untargeted metabolomics by liquid chromatography-mass spectrometry (LC-MS) is increasingly used to discover metabolic markers. This review summarizes the general workflow, recent applications, advantages, advances, limitations, and future needs of untargeted metabolomics by LC-MS for identifying metabolic markers in food authentication. In conclusion, untargeted metabolomics by LC-MS shows great efficiency to discover the metabolic markers for the authenticity assessment of biological identity, geographical origin, agricultural production, processing technology, freshness, cause of animals' death, and so on, through three main steps, namely, data acquisition, biomarker discovery, and biomarker validation. The application prospects of the selected markers by untargeted metabolomics require to be valued, and the selected markers need to be eventually applicable at targeted analysis assessing the authenticity of unknown food samples.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Animales , Biomarcadores/análisis , Cromatografía Liquida , Alimentos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
20.
Chemistry ; 27(37): 9597-9604, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33857336

RESUMEN

Oxidase-mimicking nanozymes are more desirable than peroxidase-mimicking ones since H2 O2 can be omitted. However, only a few nanomaterials are known for oxidase-like activities. In this work, we compared the activity of Mn2 O3 , Mn3 O4 and MnO2 and found that Mn2 O3 had the highest oxidase activity. Interestingly, the activity of Mn2 O3 was even inhibited by H2 O2 . The oxidase-like activity of Mn2 O3 was not much affected by the presence of proteins such as bovine serum albumin (BSA), but the physisorption of antibodies to Mn2 O3 was not strong enough to withstand the displacement by BSA. We then treated Mn2 O3 with 3-aminopropyltriethoxysilane to graft an amine group, which was used to conjugate antibodies using glutaraldehyde as a crosslinker. A one-step indirect competitive ELISA (icELISA) was developed for the detection of isocarbophos, and an IC50 of 261.7 ng/mL was obtained, comparable with the results of the standard two-step assay using horseradish peroxidase (HRP)-labeled antibodies. This assay has the advantage of significant timesaving for rapid detection of large amounts of samples. This work has discovered a highly efficient oxidase-mimicking nanozyme useful for various nano- and analytical applications.


Asunto(s)
Técnicas Biosensibles , Oxidorreductasas , Compuestos de Manganeso , Óxidos , Peroxidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA