Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 113(2): 277-290, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440495

RESUMEN

Phytochrome B (PhyB), a red-light receptor, plays important roles in diverse biological processes in plants; however, its function in NH4 + uptake and stress responses of plants is unclear. Here, we observed that mutation in indeterminate domain 10 (IDD10), which encodes a key transcription factor in NH4 + signaling, led to NH4 + -sensitive root growth in light but not in the dark. Genetic combinations of idd10 and phy mutants demonstrated that phyB, but not phyA or phyC, suppressed NH4 + -sensitive root growth of idd10. PhyB mutants and PhyB overexpressors (PhyB OXs) accumulated more and less NH4 + , respectively, compared with wild-type plants. Real time quantitative polymerase chain reaction (RT-qPCR) revealed that PhyB negatively regulated NH4 + -mediated induction of Ammonium transporter 1;2 (AMT1;2). AMT1 RNAi plants with suppressed AMT1;1, AMT1;2, and AMT1;3 expression exhibited shorter primary roots under NH4 + conditions. This suggested that NH4 + uptake might be positively associated with root growth. Further, PhyB interacted with and inhibited IDD10 and brassinazole-resistant 1 (BZR1). IDD10 interacted with BZR1 to activate AMT1;2. NH4 + uptake is known to promote resistance of rice (Oryza sativa) to sheath blight (ShB) and saline-alkaline stress. Inoculation of Rhizoctonia solani demonstrated that PhyB and IDD10 negatively regulated and AMT1 and BZR1 positively regulated resistance of rice to ShB. In addition, PhyB negatively regulated and IDD10 and AMT1 positively regulated resistance of rice to saline-alkaline stress. This suggested that PhyB-IDD10-AMT1;2 signaling regulates the saline-alkaline response, whereas the PhyB-BZR1-AMT1;2 pathway modulates ShB resistance. Collectively, these data prove that mutation in the PhyB gene enhances the resistance of rice to ShB and saline-alkaline stress by increasing NH4 + uptake.


Asunto(s)
Compuestos de Amonio , Oryza , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Compuestos de Amonio/metabolismo , Oryza/metabolismo , Mutación , Transducción de Señal , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Phys Chem A ; 128(13): 2584-2593, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38529819

RESUMEN

Hexagonal boron nitride (hBN) has attracted significant attention as a two-dimensional (2D) material due to its unique structure and properties. In this paper, we investigated the gas-phase reactions between B2H6 and NH3 and the reaction pathways potentially leading to the synthesis of hBN by using ReaxFF-based reactive molecular dynamics (MD) simulations. From the hundreds of chemical reaction pathways observed in these MD simulations, we extracted a highly reduced chemical kinetic model to describe the gas-phase mixture evolution in chemical vapor deposition of hBN using B2H6 and NH3 as precursors. The intent is to integrate this chemical model into future computational fluid dynamics (CFD) simulations of actual hBN deposition testing and production reactors to provide enhanced insights for experimental synthesis processes and reactor optimization. The chemical model of this study will serve as a stepping stone for large-scale simulations.

3.
Environ Res ; 251(Pt 1): 118635, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462083

RESUMEN

Carbon nanosol (CNS) is a carbon-based nanomaterial capable of promoting plant growth while the underlying mechanism involved in this process remains unknown. This study demonstrates that CNS promotes rice seedling growth under restricted concentrations. Macroelement transporter mutants were investigated to further investigate the CNS-mediated promotion of rice seedling growth. The genetic and physiological findings revealed that nitrate transporter 1.1B (NRT1.1B) and ammonium transporter 1 (AMT1) mutants inhibited the CNS-induced growth development of rice seedlings, whereas potassium transporter (AKT1) and phosphate transporter 8 (PT8) did not exhibit any inhibitory effects. Further investigations demonstrated the inhibition of CNS-mediated growth promotion via glutamine synthetase 1;1 (gs1;1) mutants. Additionally, the administration of CNS resulted in enhanced accumulation of chlorophyll in plants, and the promotion of CNS-induced growth was inhibited by yellow-green leaf 8 (YGL8) mutants and the chlorophyll biosynthetic gene divinyl reductase (DVR) mutants. According to these findings, the CNS promotes plant growth by stimulating chlorophyll biosynthesis. Furthermore, the presence of CNS enhanced the ability of rice to withstand blast, sheath blight (ShB), and bacterial blight. The nrt1.1b, amt1, dvr, and ygl8 mutants did not exhibit a broad spectrum effect. The positive regulation of broad-spectrum resistance in rice by GS1;1 suggests the requirement of N assimilation for CNS-mediated broad-spectrum resistance. In addition, an in vitro assay demonstrated that CNS inhibits the growth of pathogens responsible for blast, ShB, and bacterial blight, namely Magnaporthe oryzae, Rhizoctonia solani AG1-IA, and Xanthomonas oryzae pv. Oryzae, respectively. CNS application may also induce broad-spectrum resistance against bacterial and fungal pathogens, indicating that in addition to its antifungal and antibacterial properties, CNS application may also stimulate N assimilation. Collectively, the results indicate that CNS may be a potential nano-therapeutic agent for improved plant growth promotion while also providing broad-spectrum resistance.


Asunto(s)
Carbono , Oryza , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/genética , Carbono/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Clorofila/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/microbiología , Resistencia a la Enfermedad/efectos de los fármacos
4.
BMC Genomics ; 24(1): 514, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658288

RESUMEN

BACKGROUND: The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS: We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS: Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.


Asunto(s)
Células Endoteliales , Regulación de la Expresión Génica , Adulto , Humanos , Comunicación Celular/genética , Redes Reguladoras de Genes , Análisis de la Célula Individual , Proteínas Morfogenéticas Óseas
5.
Biochem Biophys Res Commun ; 672: 89-96, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343319

RESUMEN

Rice sheath blight disease (ShB) is a serious threat to rice production, and breeding ShB-resistance varieties is the most effective strategy for ShB control. However, the molecular mechanisms of rice resistance to ShB are largely unknown. In this study, the NAC transcription factor NAC028 was shown to be sensitive to ShB infection. ShB inoculation assays revealed that NAC028 is a positive regulator of ShB resistance. To elucidate the molecular basis of NAC028-mediated ShB resistance, another transcription factor (bZIP23) was identified as a NAC028-interacting protein. Results of the transcriptome and qRT-PCR analyses demonstrated that CAD8B, a key enzyme for lignin biosynthesis and ShB resistance, is regulated by both bZIP23 and NAC028. The combination of the yeast-one hybrid, ChIP-qPCR, and transactivation assays illustrated that both bZIP23 and NAC028 directly bind the CAD8B promoter and activate its expression. The transcriptional connection between bZIP23 and NAC028 was also investigated and the results of in vitro and in vivo assays demonstrated that NAC028 was one of the target genes of bZIP23, but not vice versa. The results presented here provide new insights into the molecular basis of ShB resistance and contribute to the potential targets for the ShB resistance breeding program.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética
6.
Plant Cell Environ ; 46(4): 1249-1263, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36457051

RESUMEN

Phytochrome (Phy)-regulated light signalling plays important roles in plant growth, development, and stress responses. However, its function in rice defence against sheath blight disease (ShB) remains unclear. Here, we found that PhyB mutation or shade treatment promoted rice resistance to ShB, while resistance was reduced by PhyB overexpression. Further analysis showed that PhyB interacts with phytochrome-interacting factor-like 15 (PIL15), brassinazole resistant 1 (BZR1), and vascular plant one-zinc-finger 2 (VOZ2). Plants overexpressing PIL15 were more susceptible to ShB in contrast to bzr1-D-overexpressing plants compared with the wild-type, suggesting that PhyB may inhibit BZR1 to negatively regulate rice resistance to ShB. Although BZR1 is known to regulate brassinosteroid (BR) signalling, the observation that BR signalling negatively regulated resistance to ShB indicated an independent role for BZR1 in controlling rice resistance. It was also found that the BZR1 ligand NAC028 positively regulated resistance to ShB. RNA sequencing showed that cinnamyl alcohol dehydrogenase 8B (CAD8B), involved in lignin biosynthesis was upregulated in both bzr1-D- and NAC028-overexpressing plants compared with the wild-type. Yeast-one hybrid, ChIP, and transactivation assays demonstrated that BZR1 and NAC028 activate CAD8B directly. Taken together, the analyses demonstrated that PhyB-mediated light signalling inhibits the BZR1-NAC028-CAD8B pathway to regulate rice resistance to ShB.


Asunto(s)
Oryza , Fitocromo , Fitocromo B/metabolismo , Oryza/genética , Fitocromo/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Biotechnol J ; 20(6): 1085-1097, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35170194

RESUMEN

Sheath blight (ShB) significantly threatens rice yield production. However, the underlying mechanism of ShB defence in rice remains largely unknown. Here, we identified a highly ShB-susceptible mutant Ds-m which contained a mutation at the ammonium transporter 1;1 (AMT1;1) D358 N. AMT1;1 D358 N interacts with AMT1;1, AMT1;2 and AMT1;3 to inhibit the ammonium transport activity. The AMT1 RNAi was more susceptible and similar to the AMT1;1 D358 N mutant; however, plants with higher NH4+ uptake activity were less susceptible to ShB. Glutamine synthetase 1;1 (GS1;1) mutant gs1;1 and overexpressors (GS1;1 OXs) were more and less susceptible to ShB respectively. Furthermore, AMT1;1 overexpressor (AMT1;1 OX)/gs1;1 and gs1;1 exhibited a similar response to ShB, suggesting that ammonium assimilation rather than accumulation controls the ShB defence. Genetic and physiological assays further demonstrated that plants with higher amino acid or chlorophyll content promoted rice resistance to ShB. Interestingly, the expression of ethylene-related genes was higher in AMT1;1 OX and lower in RNAi mutants than in wild-type. Also, ethylene signalling positively regulated rice resistance to ShB and NH4+ uptake, suggesting that ethylene signalling acts downstream of AMT and also NH4+ uptake is under feedback control. Taken together, our data demonstrated that the AMT1 promotes rice resistance to ShB via the regulation of diverse metabolic and signalling pathways.


Asunto(s)
Compuestos de Amonio , Oryza , Compuestos de Amonio/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Transporte de Membrana/metabolismo , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo
8.
Environ Sci Technol ; 56(12): 7820-7829, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670501

RESUMEN

Ozone-initiated oxidation reactions on indoor surfaces meaningfully alter the chemical composition of indoor air and human exposure to air toxins. Ozone mass transport within the indoor surface boundary layer plays a key role in ozone-surface reaction kinetics. However, limited information is available on detailed ozone transport dynamics near realistic, irregular indoor surfaces. This paper presents a research framework to study the underlying mechanisms of ozone reactions with realistic indoor surfaces based on microscope scanning of surface material and detailed Computational Fluid Dynamics (CFD) simulation. The study results show that indoor surface topography can meaningfully affect ozone mass transport within a surface boundary layer, thereby modulating near-surface ozone concentration gradient and surface uptake. The results also reveal that the effective indoor surface area available for ozone reaction varies with indoor air speed and turbulent air mixing within the boundary layer. The detailed dynamic behaviors of ozone reactions with realistic indoor surfaces provide insights into the implications of pollutant-surface interactions on indoor chemistry and air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Humanos , Cinética , Oxidación-Reducción , Ozono/química
9.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562952

RESUMEN

Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) seriously affects rice yield production. The discovery and application of broad-spectrum resistance genes are of great advance for disease resistance breeding. Previously, we identified that multiple receptor-like kinase (RLK) family gene deletions induced by the Ac/Ds system resulted in a lesion mimic symptom. In this study, the mutant #29 showed that this lesion mimic symptom was isolated. Further analysis identified that four RLK genes (RLK19-22) were deleted in the #29 mutant. The #29 mutant exhibited broad-spectrum resistance to Xoo and subsequent analyses identified that pathogenesis-related genes PR1a, PBZ1, and cellular H2O2 levels were significantly induced in the mutant compared to wild-type plants. A genetic analysis revealed that reconstruction of RLK20, RLK21, or RLK22 rescued the lesion mimic symptom of the #29 mutant, indicating that these three RLKs are responsible for broad-spectrum resistance in rice. Further yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that RLK20 interacts with RBOHB, which is a ROS producer in plants. Compared to wild-type plants, the #29 mutant was more, while #29/RLK20ox was less, susceptible to MV (methyl-viologen), an ROS inducer. Co-expression of RLK20 and RBOHB reduced RBOHB-promoted H2O2 accumulation in the cells. Taken together, our research indicated that the RLKs may inhibit RBOHB activity to negatively regulate rice resistance to Xoo. These results provide the theoretical basis and valuable information about the target genes necessary for the successful breeding of rice cultivars resistant to bacterial blight.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Peróxido de Hidrógeno/farmacología , Oryza/genética , Oryza/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno
10.
Biochem Biophys Res Commun ; 563: 23-30, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34058471

RESUMEN

Rice blast disease caused by infection with Magnaporthe oryzae, a hemibiotrophic fungal pathogen, significantly reduces the yield production. However, the rice defense mechanism against blast disease remains elusive. To identify the genes involved in the regulation of rice defense to blast disease, dissociation (Ds) transposon tagging mutant lines were analyzed in terms of their response to M. oryzae isolate Guy11. Among them, CBL-interactingprotein kinase31 (CIPK31) mutants were more susceptible than wild-type plants to blast. The CIPK31 transcript was found to be insensitive to Guy11 infection, and the CIPK31-GFP was localized to the cytosol and nucleus. Overexpression of CIPK31 promoted rice defense to blast. Further analysis indicated that CIPK31 interacts with Calcineurin B-like 2 (CBL2) and CBL6 at the plasma membrane, and cbl2 mutants are more susceptible to blast compared with wild-type plants, suggesting that calcium signaling might partially through the CBL2-CIPK31 signaling regulate rice defense. Yeast two-hybrid results showed that AKT1-like (AKT1L), a potential potassium (K+) channel protein, interacted with CIPK31, and the K+ level was significantly lower in the cipk31 mutants than in the wild-type control. In addition, exogenous potassium application increased rice resistance to blast, suggesting that CIPK31 might interact with AKT1L to increase K+ uptake, thereby promoting resistance to blast. Taken together, the results presented here demonstrate that CBL2-CIPK31-AKT1L is a new signaling pathway that regulates rice defense to blast disease.


Asunto(s)
Ascomicetos/aislamiento & purificación , Oryza/metabolismo , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Resistencia a la Enfermedad , Oryza/citología , Oryza/microbiología , Enfermedades de las Plantas , Proteínas Quinasas/genética
11.
Biochem Biophys Res Commun ; 585: 117-123, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34801931

RESUMEN

Sheath blight (ShB) is one of the most common diseases in rice that significantly affects yield production. However, the underlying mechanisms of rice defense remain largely unknown. Our previous transcriptome analysis identified that infection with Rhizoctonia solani significantly induced the expression level of SWEET2a, a member of the SWEET sugar transporter. The sweet2a genome-editing mutants were less susceptible to ShB. Further yeast-one hybrid, ChIP, and transient assays demonstrated that WRKY53 binds to the SWEET2a promoter to activate its expression. WRKY53 is a key brassinosteroid (BR) signaling transcription factor. Similar to the BR receptor gene BRI1 and biosynthetic gene D2 mutants, the WRKY53 mutant and overexpressor were less and more susceptible to ShB compared to wild-type, respectively. Inoculation with R. solani induced expression of BRI1, D2, and WRKY53, but inhibited MPK6 (a BR-signaling regulator) activity. Also, MPK6 is known to phosphorylate WRKY53 to enhance its transcription activation activity. Transient assay results indicated that co-expression of MPK6 and WRKY53 enhanced WRKY53 trans-activation activity to SWEET2a. Furthermore, expression of WRKY53 SD (the active phosphorylated forms of WRKY53) but not WRKY53 SA (the inactive phosphorylated forms of WRKY53), enhanced WRKY53-mediated activation of SWEET2a compared to expression of WRKY53 alone. Taken together, our analyses showed that R. solani infection may activate BR signaling to induce SWEET2a expression via WRKY53 through negative regulation of ShB resistance in rice.


Asunto(s)
Proteínas de Unión al ADN/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Monosacáridos/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Western Blotting , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Oryza/metabolismo , Oryza/microbiología , Fosforilación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizoctonia/fisiología , Transducción de Señal
12.
FASEB J ; 33(6): 7519-7528, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30888203

RESUMEN

Because glucose is an essential energy source for living organisms, glucose transporters (GLUTs) are present in all species worldwide. Encoded by the solute carrier family 2 gene family, the GLUT proteins generally have 12 transmembrane helices (TMHs). In total, 14 GLUT proteins have been identified in humans (hGLUTs), and they are divided into 3 classes on the basis of their transport characteristics and sequence similarities. Herein, we report the use of protein sequence similarity networks (SSNs) to visualize the sequence trends of 4101 GLUT proteins across the Metazoa. The SSNs separated the metazoan proteins into 3 new classes that were different from the traditional classification system. In the new system, 9 of the 14 hGLUTs (hGLUT1-5, 7, 9, 11, and 14) were grouped into class I, 3 (hGLUT10, 12, and 13) were grouped into class II, and 2 (hGLUT6 and 8) were grouped into class III, as also supported by the phylogenetic tree. Multiple sequence alignments further showed that the conserved residues in each class were different. Furthermore, the hGLUTs in each class showed unique evolutionary characteristics, with similar nonsynonymous-to-synonymous divergence ratios and similar regions under conservative selection pressure. Of note, GLUTs with 3, 6, 18, 24, and 36 TMHs were identified among the metazoan genomes, and 1 Chinese hamster protein with 6 TMHs showed GLUT activity. In summary, this large-scale sequence analysis provided new insights into the classification and evolution of GLUTs and further showed that gene duplication and fusion could have been important drivers during the evolution of these transporter molecules.-Jia, B., Yuan, D. P., Lan, W. J., Xuan, Y. H., Jeon, C. O. New insight into the classification and evolution of glucose transporters in the Metazoa.


Asunto(s)
Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Animales , Evolución Biológica , Proteínas de Transporte de Monosacáridos/genética , Filogenia
13.
J Phys Chem A ; 124(21): 4290-4304, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32364731

RESUMEN

Sooting tendencies of a series of nitrogen-containing hydrocarbons (NHCs) have been recently characterized experimentally using the yield sooting index (YSI) methodology. This work aims to identify soot-relevant reaction pathways for three selected C6H15N amines, namely, dipropylamine (DPA), diisopropylamine (DIPA), and 3,3-dimethylbutylamine (DMBA) using ReaxFF molecular dynamics (MD) simulations and quantum mechanical (QM) calculations and to interpret the experimentally observed trends. ReaxFF MD simulations are performed to determine the important intermediate species and radicals involved in the fuel decomposition and soot formation processes. QM calculations are employed to extensively search for chemical reactions involving these species and radicals based on the ReaxFF MD results and also to quantitatively characterize the potential energy surfaces. Specifically, ReaxFF simulations are carried out in the NVT ensemble at 1400, 1600, and 1800 K, where soot has been identified to form in the YSI experiment. These simulations account for the interactions among test fuel molecules and pre-existing radicals and intermediate species generated from rich methane combustion, using a recently proposed simulation framework. ReaxFF simulations predict that the reactivity of the amines decrease in the order DIPA > DPA > DMBA, independent of temperature. Both QM calculations and ReaxFF simulations predict that C2H4, C3H6, and C4H8 are the main nonaromatic soot precursors formed during the decomposition of DPA, DIPA, and DMBA, respectively, and the associated reaction pathways are identified for each amine. Both theoretical methods predict that sooting tendency increases in the order DPA, DIPA, and DMBA, consistent with the experimentally measured trend in YSI. This work demonstrates that sooting tendencies and soot-relevant reaction pathways of fuels with unknown chemical kinetics can be identified efficiently through combined ReaxFF and QM simulations. Overall, predictions from ReaxFF simulations and QM calculations are consistent, in terms of fuel reactivity, major intermediates, and major nonaromatic soot precursors.

15.
Ann Bot ; 124(6): 947-960, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30715138

RESUMEN

BACKGROUND AND AIMS: INDETERMINATE DOMAIN 10 (IDD10) is a key transcription factor gene that activates the expression of a large number of NH4+-responsive genes including AMMONIUM TRANSPORTER 1;2 (AMT1;2). Primary root growth of rice (Oryza sativa) idd10 mutants is hypersensitive to NH4+. The involvement of CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE (CIPK) genes in the action of IDD10 on NH4+-mediated root growth was investigated. METHODS: Quantitative reverse transcription-PCR was used to analyse NH4+- and IDD10-dependent expression of CIPK genes. IDD10-regulated CIPK target genes were identified using electrophoretic mobility shift assays, chromatin immunoprecipitation and transient transcription assays. Root growth rate, ammonium content and 15N uptake of cipk mutants were measured to determine their sensitivity to NH4+ and to compare these phenotypes with those of idd10. The genetic relationship between CIPK9 OX and idd10 was investigated by crosses between the CIPK9 and IDD10 lines. KEY RESULTS: AMT1;2 was overexpressed in idd10 to determine whether NH4+-hypersensitive root growth of idd10 resulted from limitations in NH4+ uptake or from low cellular levels of NH4+. High NH4+ levels in idd10/AMT1;2 OX did not rescue the root growth defect. Next, the involvement of CIPK genes in NH4+-dependent root growth and interactions between IDD10 and CIPK genes was investigated. Molecular analysis revealed that IDD10 directly activated transcription of CIPK9 and CIPK14. Expression of CIPK8, 9, 14/15 and 23 was sensitive to exogenous NH4+. Further studies revealed that cipk9 and idd10 had almost identical NH4+-sensitive root phenotypes, including low efficiency of 15NH4+ uptake. Analysis of plants containing both idd10 and CIPK9 OX showed that CIPK9 OX could rescue the NH4+-dependent root growth defects of idd10. CONCLUSIONS: CIPK9 was involved in NH4+-dependent root growth and appeared to act downstream of IDD10. This information will be useful in future explorations of NH4+ signalling in plants.


Asunto(s)
Compuestos de Amonio , Oryza , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Proteínas Quinasas
16.
Phytopathology ; 108(9): 1104-1113, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29767552

RESUMEN

Rhizoctonia solani causes sheath blight disease in rice; however, the defense mechanism of rice plants against R. solani remains elusive. To analyze the roles of brassinosteroid (BR) and ethylene signaling on rice defense to R. solani, wild-type (WT) rice and several mutants and overexpressing (OX) lines were inoculated with R. solani. Mutants d61-1 and d2 were less susceptible to sheath blight disease, bri1-D was more susceptible, and ravl1 and d61-1/EIL1 Ri5 were similarly susceptible compared with WT. The double mutant ravl1/d61-1 was phenotypically similar to the ravl1 mutant. Transcriptome analysis, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, and transient assays indicted that RAVL1 might directly activate Ethylene insensitive 3-like 1 (EIL1), a master regulator of ethylene signaling. Mutants ers1 and d61-1/RAVL1 OX were resistant to sheath blight disease, whereas EIL1 RNAi mutants and RAVL1 OX were more susceptible than WT. BRI1 and D2 expression in EIL1 Ri5/RAVL1 OX and EIL1 expression in d61-1/RAVL1 OX indicated that RAVL1 activates BRI1/D2 and EIL1, respectively, independent of BR and ethylene signaling. Our analyses provide information on how BR and ethylene signaling regulate sheath blight disease and on the regulatory function of RAVL1 in rice sheath blight disease.


Asunto(s)
Interacciones Huésped-Patógeno , Oryza/genética , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Rhizoctonia/fisiología , Brasinoesteroides/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Transducción de Señal
18.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035023

RESUMEN

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Asunto(s)
Brasinoesteroides/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo
19.
Phys Chem Chem Phys ; 19(7): 5004-5017, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28140413

RESUMEN

In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and Tu = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA