Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587938

RESUMEN

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

2.
Anal Chem ; 96(10): 4180-4189, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38436249

RESUMEN

Inflammation has been confirmed to be closely related to the development of tumors, while peroxynitrite (ONOO-) is one of the most powerful oxidative pro-inflammatory factors. Although ONOO- can kill bacteria through oxidation, it will activate matrix metalloproteinases (MMPs), accelerate the degradation of the extracellular matrix (ECM), and subsequently lead to the activation and release of other tumor promotion factors existing in the ECM, promoting tumor metastasis and invasion. Herein, we report a simple aggregation-induced emission (AIE) nanoprobe (NP), TPE-4NMB, that can simultaneously visualize and deplete ONOO-. The probe can light up the endogenous and exogenous ONOO- in cells and selectively inhibit the proliferation and migration of 4T1 cells by inducing an intracellular redox homeostasis imbalance through ONOO- depletion. After being modified with DSPE-PEG2000, the TPE-4NMB NPs can be used to image ONOO- induced by various models in vivo; especially, it can monitor the dynamic changes of ONOO- level in the residual tumor after surgery, which can provide evidence for clarifying the association between surgery, ONOO-, and cancer metastasis. Excitingly, inhibited tumor volume growth and decreased counts of lung metastases were observed in the TPE-4NMB NPs group, which can be attributed to the downregulated expression of MMP-9 and transforming growth factor-ß (TGF-ß), increased cell apoptosis, and inhibited epithelial-mesenchymal transition (EMT) mediated by ONOO-. The results will provide new evidence for clarifying the relationship between surgery, ONOO-, and tumor metastasis and serve as a new intervention strategy for preventing tumor metastasis after tumor resection.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Ácido Peroxinitroso , Neoplasias Pulmonares/prevención & control , Factor de Crecimiento Transformador beta , Metaloproteinasas de la Matriz/metabolismo , Colorantes Fluorescentes
3.
Nucleic Acids Res ; 50(3): 1517-1530, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35048968

RESUMEN

Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.


Asunto(s)
Replicación del ADN , Proteínas Quinasas , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Nano Lett ; 23(10): 4572-4578, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37171253

RESUMEN

In this study, we proposed a novel imaging technique, photoinduced electrogenerated chemiluminescence microscopy (PECLM), to monitor redox reactions driven by hot carriers on single gold nanoparticles (AuNPs) on TiO2. Under laser irradiation, plasmon-generated hot carriers were separated by an electric field, leaving hot holes on the surface of AuNPs to drive ECL reactions. PECL intensity was highly sensitive to the number of hot carriers. Through quantitative image analysis, we found that PECL density on individual AuNPs decreased significantly with an increase in particle diameter, indicating that particle size has a significant impact on photoelectrochemical conversion efficiency. For the first time, we verified the feasibility of PECLM in mapping the catalytic activity of single photocatalysts. PECLM opens a new prospect for the in situ imaging of photocatalysis in a high-throughput way, which not only facilitates the optimization of plasmonic photocatalysts but also contributes to the dynamic study of photocatalytic processes on micro/nanointerfaces.

5.
Anal Chem ; 95(34): 12648-12655, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37599579

RESUMEN

Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.

6.
Cancer Immunol Immunother ; 72(9): 3079-3095, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37351605

RESUMEN

Photodynamic therapy (PDT) is an emerging clinical treatment that is expected to become an important adjuvant strategy for the immunotherapeutic cancer treatment. Recently, numerous works have reported combination strategies. However, clinical data showed that the anti-tumor immune response of PDT was not lasting though existing. The immune activation effect will eventually turn to immunosuppressive effect and get aggravated at the late stage post-PDT. So far, the mechanism is still unclear, which limits the design of specific correction strategies and further development of PDT. Several lines of evidence suggest a role for TGF-ß1 in the immunosuppression associated with PDT. Herein, this study systematically illustrated the dynamic changes of immune states post-PDT within the tumor microenvironment. The results clearly demonstrated that high-light-dose PDT, as a therapeutic dose, induced early immune activation followed by late immunosuppression, which was mediated by the activated TGF-ß1 upregulation. Then, the mechanism of PDT-induced TGF-ß1 accumulation and immunosuppression was elucidated, including the ROS/TGF-ß1/MMP-9 positive feedback loop and CD44-mediated local amplification, which was further confirmed by spatial transcriptomics, as well as by the extensive immune inhibitory effect of local high concentration of TGF-ß1. Finally, a TGF-ß blockade treatment strategy was presented as a promising combinational strategy to reverse high-light-dose PDT-associated immunosuppression. The results of this study provide new insights for the biology mechanism and smart improvement approaches to enhance tumor photodynamic immunotherapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Factor de Crecimiento Transformador beta1 , Fotoquimioterapia/métodos , Terapia de Inmunosupresión , Neoplasias/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Línea Celular Tumoral , Microambiente Tumoral
7.
Angew Chem Int Ed Engl ; 62(40): e202308595, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37551967

RESUMEN

Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.

8.
Small ; 18(17): e2200608, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35344263

RESUMEN

Controlled morphology of solution-processed thin films have realized impressive achievements for non-fullerene acceptor (NFA)-based organic solar cells (OSCs). Given the large set of donor-acceptor pairs, employing various processing conditions to realize optimal morphology for high efficiency and stable OSCs is a strenuous task. Therefore, comprehensive correlations between processing conditions and morphology evolution pathways have to be developed for efficient performance and stability of devices. Within the framework of the blend system, crystallization transitions of NFA molecules are tracked utilizing the first heating scan of differential scanning calorimeter (DSC) measurement correlating with respective morphology evolution of blend films. Real-time dynamics measurements and morphology characterizations are combined to provide optimal morphology transition pathways as NFA molecules are shown to be released from the mixed-phase to form balanced ordered packing with variant processing conditions. Polymer:NFA films are fabricated using blade coating incorporating solvent additive or thermal annealing as processing conditions as a correlation is formulated between performance and stability of solar cells with morphology transition pathways. This work demonstrates the significance of processing condition-controlled transition pathways for the realization of optimal morphology leading to superior OSC devices.

9.
Anal Chem ; 93(15): 6088-6093, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33826299

RESUMEN

Herein, a dual-mode sensing platform using cationic N,N-bis(2-(trimethylammonium iodide)propylene)perylene-3,4,9,10-tetracarboxydiimide (PDA+)-assembled DNA strands as a quencher was suggested for estradiol (E2) detection. The aptamer chain was initially anchored with the Ru(II) novel molecule (Ru complex), which was recombined with carbohydrazide (CON4H6) and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) dichloride [Ru(dcbpy)32+] modified on copper oxide (CuO) nanospheres. Intramolecular electrochemiluminescence (ECL) occurring between CON4H6 and Ru(dcbpy)32+ effectively improved the reaction rate and increased the ECL efficiency. By employing effective van der Waals' force, PDA+ was endowed with an efficient ECL quenching probe on an electrode. The signal on the ECL interface can be converted into quenching because of energy transfer between the intercalator and the emitter. Notably, cationic PDA+ possessing a large planar π-π skeleton improved advantageous activity of redox and DNA aptamer indurative loading capacity and directly generated a well-defined cathodic peak to execute the EC bio-detection. This method not only avoids the difficulty of assembling various signal indicators but also improves the sensitivity greatly using the quenching mechanism. In addition, disparate double-response signals coming from different principles of transduction are in a position to verify each other to improve the accuracy. Hence, examination areas of 0.001-100 nM with E2 for ECL and EC were obtained, supplying a novel sensing strategy with promising ideas and perspectives of detection platform construction.


Asunto(s)
Técnicas Biosensibles , Perileno , Rutenio , Alquenos , Técnicas Electroquímicas , Estradiol , Yoduros , Mediciones Luminiscentes
10.
Small ; 17(21): e2007011, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33719196

RESUMEN

Promoting efficiency, deformability, and life expectancy of stretchable organic solar cells (OSCs) have always been key concerns that researchers are committed to solving. However, how to improve them simultaneously remains challenging, as morphology parameters, such as ordered molecular arrangement, beneficial for highly efficient devices actually limits mechanical stability and deformability. In this study, the unfavorable trade-off among these properties has been reconciled in an all-polymer model system utilizing a mechanically deformable guest component. The success of this strategy stems from introducing a highly ductile component without compromising the pristine optimized morphology. Preferable interaction between two donors can maintain the fiber-like structure while enhancing the photocurrent to improve efficiency. Morphology evolution detected via grazing incidence X-ray scattering and in situ UV-vis absorption spectra during stretching have verified the critical role of strengthened interaction on stabilizing morphology against external forces. The strengthened interaction also benefits thermal stability, enabling the ternary films with small efficiency degradation after heating 1500 h under 80 °C. This work highlights the effect of morphology evolution on mechanical stability and provides new insights from the view of intermolecular interaction to fabricate highly efficient, stable, and stretchable/wearable OSCs.

11.
Anal Chem ; 92(12): 8472-8479, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32438803

RESUMEN

Oxygen vacancies (OVs) enhanced electrochemiluminescence (ECL) biosensing strategy using luminol thermally encapsulated in apoferritin (Lum@apoFt) as an efficient transducer was investigated for ultrasensitive biomarker detection. By applying the oxygen-defect engineering (ODE) strategy, the OVs enriched cobalt-iron oxide (r-CoFe2O4) was fabricated as the sensing substrate to boost the electron mobility and catalyze the generation of superoxide anion radical (O2•-) for signal amplification. It should be noted that r-CoFe2O4 with higher OVs density dramatically accelerated the ECL reaction between O2•- and luminol anionic radicals, achieving 6.5-fold stronger ECL output than CoFe2O4 with no or low OVs density. Moreover, facile encapsulation of approximate 412 luminol molecules in a single apoFt cavity was first realized by an efficient thermal-induction method. The obtained Lum@apoFt complexes exhibited well-maintained ECL efficiency and excellent biocompatibility for biological modifications. On this basis, a biosensor was developed for early diagnostics of squamous cell carcinomas by detecting its representative biomarker named cytokeratin 19 fragment 21-1 (CYFRA 21-1), from which excellent linearity was achieved in 0.5 pg/mL to 50 ng/mL with a detection limit of 0.14 pg/mL. This work not only put forward a novel idea of creating OVs enriched sensing interface with excellent signal-amplification function but also proposes a facile and robust methodology to design apoFt-based transducers for developing more practical nanoscale biosensors in early diagnostics of diseases.


Asunto(s)
Antígenos de Neoplasias/sangre , Apoferritinas/química , Biomarcadores de Tumor/sangre , Carcinoma de Células Escamosas/sangre , Queratina-19/sangre , Luminol/química , Oxígeno/química , Neoplasias de la Vejiga Urinaria/sangre , Técnicas Biosensibles , Calibración , Carcinoma de Células Escamosas/diagnóstico , Técnicas Electroquímicas , Humanos , Inmunoensayo , Mediciones Luminiscentes , Tamaño de la Partícula , Propiedades de Superficie , Temperatura , Neoplasias de la Vejiga Urinaria/diagnóstico
12.
Anal Chem ; 92(20): 14203-14209, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32955244

RESUMEN

This work outlines a versatile and high-performance electrochemiluminescence (ECL) platform that uses complex luminescent molecules [Ru(II) complex] formed by carbohydrazide (CON4H6) and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) dichloride [Ru(dcbpy)32+] as emitters to facilitate the intramolecular ECL mechanism for reducing the response distance and interference, and they were kept immobilized on a porous bismuth vanadate nanoarray (BiVO4 NA) to improve the orderliness of electron transfer. In addition, the detection was made depending on the etching of triangular silver nanoparticles (T-Ag NPs) by self-generated hydrogen peroxide (H2O2) to initiate the recovery response of the originally quenched ECL due to ECL-RET between the Ru(II) complex (donor) and T-Ag NPs (receptor). Because of the antibacterial application of dopamine, its own redox ability could produce more H2O2 for etching receptor T-Ag NPs under near-infrared (NIR) stimulation. Notably, in this system, the specific binding of antigens and antibodies with the autogenesis process of H2O2 and the ECL detection procedure are independent. Therefore, the proposed system can avert the impact of complex biological samples effectively, and the ECL efficiency of the Ru(II) complex can be readily utilized. On this basis, a biosensor is explored for the primary diagnosis of squamous cell carcinoma by detecting the biomarker named after cytokeratin fragment 19 (CYFRA21-1), from which an excellent linearity from 0.1 pg/mL to 50 ng/mL is achieved with a detection limit of 0.058 pg/mL. All of these results confirmed that this strategy can be a promising candidate for fabricating an ECL-based biosensor.


Asunto(s)
Antígenos de Neoplasias/análisis , Peróxido de Hidrógeno/química , Queratina-19/análisis , Nanopartículas del Metal/química , Plata/química , Técnicas Biosensibles , Bismuto/química , Complejos de Coordinación/química , Técnicas Electroquímicas , Colorantes Fluorescentes/química , Humanos , Hidrazinas/química , Límite de Detección , Mediciones Luminiscentes , Rutenio/química , Vanadatos/química
13.
Angew Chem Int Ed Engl ; 53(24): 6253-8, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24740532

RESUMEN

To achieve deep tumor penetration of large-sized nanoparticles (NPs), we have developed a reversible swelling-shrinking nanogel in response to pH variation for a sequential intra-intercellular NP delivery. The nanogel had a crosslinked polyelectrolyte core, consisting of N-lysinal-N'-succinyl chitosan and poly(N-isopropylacrylamide), and a crosslinked bovine serum albumin shell, which was able to swell in an acidic environment and shrink back under neutral conditions. The swelling resulted in a rapid release of the encapsulated chemotherapeutics in the cancer cells for efficient cytotoxicity. After being liberated from the dead cells, the contractive nanogel could infect neighboring cancer cells closer to the center of the tumor tissue.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanopartículas
14.
Adv Mater ; 36(19): e2312805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319917

RESUMEN

Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.

15.
Adv Mater ; 36(3): e2308061, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37734746

RESUMEN

Though encouraging performance is achieved in small-area organic photovoltaics (OPVs), reducing efficiency loss when evoluted to large-area modules is an important but unsolved issue. Considering that polymer materials show benefits in film-forming processability and mechanical robustness, a high-efficiency all-polymer OPV module is demonstrated in this work. First, a ternary blend consisting of two polymer donors, PM6 and PBQx-TCl, and one polymer acceptor, PY-IT, is developed, with which triplet state recombination is suppressed for a reduced energy loss, thus allowing a higher voltage; and donor-acceptor miscibility is compromised for enhanced charge transport, thus resulting in improved photocurrent and fill factor; all these contribute to a champion efficiency of 19% for all-polymer OPVs. Second, the delayed crystallization kinetics from solution to film solidification is achieved that gives a longer operation time window for optimized blend morphology in large-area module, thus relieving the loss of fill factor and allowing a record efficiency of 16.26% on an upscaled module with an area of 19.3 cm2 . Besides, this all-polymer system also shows excellent mechanical stability. This work demonstrates that all-polymer ternary systems are capable of solving the upscaled manufacturing issue, thereby enabling high-efficiency OPV modules.

16.
Adv Mater ; 36(11): e2307280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100730

RESUMEN

The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.

17.
Adv Mater ; 35(32): e2302927, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178458

RESUMEN

Semi-transparent organic solar cells (ST-OSCs) have great potential for application in vehicle- or building-integrated solar energy harvesting. Ultrathin active layers and electrodes are typically utilized to guarantee high power conversion efficiency (PCE) and high average visible transmittance (AVT) simultaneously; however, such ultrathin parts are unsuitable for industrial high-throughput manufacturing. In this study, ST-OSCs are fabricated using a longitudinal through-hole architecture to achieve functional region division and to eliminate the dependence on ultrathin films. A complete circuit that vertically corresponds to the silver grid is responsible for obtaining high PCE, and the longitudinal through-holes embedded in it allow most of the light to pass through,where the overall transparency is associated with the through-hole specification rather than the thicknesses of active layer and electrode. Excellent photovoltaic performance over a wide range of transparency (9.80-60.03%), with PCEs ranging from 6.04% to 15.34% is achieved. More critically, this architecture allows printable 300-nm-thick devices to achieve a record-breaking light utilization efficiency (LUE) of 3.25%, and enables flexible ST-OSCs to exhibit better flexural endurance by dispersing the extrusion stress into the through-holes. This study paves the way for fabricating high-performance ST-OSCs and shows great promise for the commercialization of organic photovoltaics.

18.
ACS Appl Mater Interfaces ; 15(3): 4275-4283, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36645327

RESUMEN

Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.

19.
J Pharm Sci ; 112(9): 2483-2493, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37023852

RESUMEN

New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including ß-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 µg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.


Asunto(s)
Alcaloides , Antineoplásicos , Artritis Experimental , Picrasma , Ratas , Animales , Picrasma/química , Estructura Molecular , Artritis Experimental/tratamiento farmacológico , Ácido Hialurónico , Alcaloides/química , Alcaloides/farmacología , Sistemas de Liberación de Medicamentos , Antiinflamatorios/química , Lípidos , Agua
20.
Talanta ; 238(Pt 2): 123047, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801904

RESUMEN

Lanthanide metal organic frameworks (L-MOFs) are emerging as promising electrochemiluminescence (ECL) emitters for bioanalysis. This work proposed a copper doped terbium MOF as a luminescent tag for construction of a "signal-on" ECL immunosensing method. The Tb-Cu-PA MOF was prepared using Tb3+ and Cu2+ ions as metal linkers and m-phthalic acid as bridge ligand, and exhibited strong ECL emission with K2S2O8 as a coreactant. The immunosensor was prepared by immobilizing capture antibody on Pd nanoparticles modified Ni-Co layered double hydroxide (Pd-ZIF-67@LDH) nanoboxes, which showed strong electrocatalytic activity toward the reduction of S2O82- for amplifying the ECL signal. Upon the sandwich-typed immunoreactions, Tb-Cu-PA MOF labeled antibody was introduced onto the immunosensor for sensitive ECL detection of target protein. Using cytokeratin 19 fragment 21-1 (CYFRA21-1), a representative lung cancer biomarker, as target model, the ECL immunosensing method showed a linear range of 0.01-100 ng/mL and a detection limit of 2.6 pg/mL (S/N = 3). This immunosensing strategy highlighted the advances of using luminescent and electroactive MOFs in the developments of highly efficient immunosensors for bioanalysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Antígenos de Neoplasias , Cobre , Técnicas Electroquímicas , Inmunoensayo , Queratina-19 , Límite de Detección , Mediciones Luminiscentes , Terbio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA